Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu
Exercises: Emanuel Laude, Zhenzhang Ye
Summer Semester 2018

Computer Vision Group
Institut für Informatik Technische Universität München

Weekly Exercises 3

Room: 02.09.023
Wednesday, 09.05.2018, 12:15-14:00
Submission deadline: Monday, 07.05.2018, 16:15, Room 02.09.023

Subdifferential

Exercise 1 (4 Points). Let the convex function $J: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be differentiable at $u \in \operatorname{int}(\operatorname{dom}(J))$. Show that

$$
\partial J(u)=\{\nabla J(u)\} .
$$

Hint: Use the definition of the subdifferential and the directional derivative. For J being differentiable at the interior of its domain, some direction $v \in \mathbb{R}^{n}$ and some point $u \in \operatorname{int}(\operatorname{dom}(J))$ the directional derivative $\partial_{v} J$ of J is given as

$$
\partial_{v} J(u):=\lim _{\epsilon \rightarrow 0} \frac{J(u+\epsilon v)-J(u)}{\epsilon}=\lim _{\epsilon \rightarrow 0} \frac{J(u)-J(u-\epsilon v)}{\epsilon}=\langle\nabla J(u), v\rangle .
$$

Exercise 2 (8 Points). Compute the subdifferential of the following functions:

- $J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{1}$.
- $J: \mathbb{R}^{n} \rightarrow \mathbb{R}, J(u)=\|u\|_{\infty}$.
- $J: \mathbb{E} \rightarrow \overline{\mathbb{R}}, J(u)=\delta_{C}(u)$ for a closed convex set $C \subset \mathbb{E}$.
- $J: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}, J(X)=\sum_{i=1}^{m}\left(\sum_{j=1}^{n}\left(X_{i, j}\right)^{2}\right)^{1 / 2}$.

Exercise 3 (6 points). Compute the subdifferential of nuclear norm:

$$
X \in \mathbb{R}^{n \times n} \mapsto\|X\|_{\text {nuclear }}=\sum_{i} \sigma_{i}(X),
$$

i.e., sum of singular values.

Hint: Show that the subdifferential at point $X \in \mathbb{R}^{n \times n}$ with $s \geq 0$ zero singular values is given as

$$
\begin{equation*}
\partial\|\cdot\|_{\mathrm{nuc}}(X)=\left\{U_{1} V_{1}^{\top}+U_{2} M V_{2}^{\top}: M \in \mathbb{R}^{s \times s},\|M\|_{\text {spec }} \leq 1\right\} \tag{1}
\end{equation*}
$$

where $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ and $V=\left[\begin{array}{ll}V_{1} & V_{2}\end{array}\right]$ are given by the singular value decomposition of $X=U \Sigma V^{\top}$, with U_{1} and V_{1} having $n-s$ columns. Furthermore $\|\cdot\|_{\text {spec }}$ denotes the spectral norm, i.e., the largest singular value.

