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Convex cone (10+10 Points)
Exercise 1 (4 points). Assume J : E→ R, prove following facts of convex conjugate:

• J̃(·) = αJ(·)⇒ J̃∗(·) = αJ∗(·/α), α > 0.

• J̃(·) = J(· − z)⇒ J̃∗(·) = J∗(·) + 〈·, z〉.

Exercise 2 (6 points). Assume J : Rn → R, compute the convex conjugate of
following functions:

• J(u) = 1
q
||u||qq =

∑n
i=1

1
q
uqi , q ∈ [1,+∞].

• J(u) =
∑n

i=1 uilogui + δ4n−1(u).

• J(u) =

{
1
2
u2, −ε ≤ u ≤ ε

+∞, otherwise

Exercise 3 (10 Points).

Definition (Slater’s condition). Let J : Rn → R, G : Rn → Rm be continuously
differentiable and convex, and H : Rn → Rl be affine linear i.e. Au + b = 0. Let
U := {u ∈ Rn : gi(u) ≤ 0, hj(u) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ l} denote the feasible set.
The condition

∃u ∈ U s.t. gi(u) < 0, hj(u) = 0,∀ 1 ≤ i ≤ m, 1 ≤ j ≤ l

is called Slater’s condition

Definition (Polar cone). For a set C, the polar cone of C is defined as

Co = {y ∈ E : 〈y, d〉, ∀d ∈ C}.

Definition (Tangent cone). Let U ⊂ E be convex and u ∈ U . Then the tangent
cone TU(u) is defined as

TU(u) = {d ∈ E : ∃ui ∈ U with ui → u and ∃ti → 0+, s.t. lim
i→+∞

ui − u
ti

= d}

1



Now consider following constrainted optimization problem:

min
u

J(u)

s.t. gi(u) ≤ 0, i = 1, . . . ,m

hj(u) = Au+ b = 0, j = 1, . . . , l

where J and gi are continuously differentiable and convex functions and hj are affine
linear. Let U be the feasible set defined as before and U1 := {u ∈ Rn : G(u) ≤ 0}
and U2 := {u ∈ Rn : H(u) = 0}. Assume Slater’s condition holds in U .

1. Using following theorem:

Theorem 1. Let f1, . . . , fn are proper convex functions on Rn, and let f =
f1 + · · · + fm. If the convex sets ri(domfi), i = 1, . . . ,m have a point in
common, then

∂f(u) = ∂f1(u) + · · ·+ ∂fn(u), ∀u.

prove that NU(u) = NU1(u) +NU2(u) where NU(u) is the normal cone of U at
u.

2. Prove that NU2(u) = {
∑l

j=1 µj∇hj(u) : µ ∈ Rl}.

3. Deduce that TU1(u) = {d ∈ E : ∇GA(u)d ≤ 0}, where A(u) = {i : gi(u) =
0, i = 1, . . . ,m} is called active set.
Hint: Firstly, show that {d ∈ E : ∇GA(u)d ≤ 0} ⊂ cl({d ∈ E : ∇GA(u)d <
0}) ⊂ TU1(u). For the first "⊂" relation, consider the linear combination of a
boundary point and an inner point. Then show TU1(u) ⊂ {d ∈ E : ∇GA(u)d ≤
0}.

4. Show that NU1(u) = {
∑m

i=1 λi∇gi(u) : λi ≥ 0, λigi(u) = 0, i = 1, . . . ,m}. You
can use following two theorems:

Theorem 2. If a set C ⊂ E is closed and convex, then the bipolar cone is
itself i.e. Coo = C.

Theorem 3. Let C ⊂ E be a nonempty, convex set and let u ∈ C. Then the
normal cone of C at u is the polar cone of the tangent cone of C at u. That is

Nc(u) = (Tc(u))
o.

5. Show that u∗ ∈ U satisfies that −∇J(u∗) ∈ NU(u
∗) if and only if u∗ is a

minimizer.
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