Lecture: Dr. Tao Wu
Exercises: Emanuel Laude, Zhenzhang Ye
Summer Semester 2018

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 4

Room: 02.09.023
Wednesday, 16.05.2018, 12:15-14:00
Submission deadline: Monday, 14.05.2018, 16:15, Room 02.09.023

Convex cone

(10+10 Points)

Exercise 1 (4 points). Assume $J: \mathbb{E} \rightarrow \mathbb{R}$, prove following facts of convex conjugate:

- $\tilde{J}(\cdot)=\alpha J(\cdot) \Rightarrow \tilde{J}^{*}(\cdot)=\alpha J^{*}(\cdot / \alpha), \alpha>0$.
- $\tilde{J}(\cdot)=J(\cdot-z) \Rightarrow \tilde{J}^{*}(\cdot)=J^{*}(\cdot)+\langle\cdot, z\rangle$.

Exercise 2 (6 points). Assume $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$, compute the convex conjugate of following functions:

- $J(u)=\frac{1}{q}\|u\|_{q}^{q}=\sum_{i=1}^{n} \frac{1}{q} u_{i}^{q}, q \in[1,+\infty]$.
- $J(u)=\sum_{i=1}^{n} u_{i} \log u_{i}+\delta_{\Delta^{n-1}}(u)$.
- $J(u)= \begin{cases}\frac{1}{2} u^{2}, & -\epsilon \leq u \leq \epsilon \\ +\infty, & \text { otherwise }\end{cases}$

Exercise 3 (10 Points).
Definition (Slater's condition). Let $J: \mathbb{R}^{n} \rightarrow \mathbb{R}, G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuously differentiable and convex, and $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{l}$ be affine linear i.e. $A u+b=0$. Let $U:=\left\{u \in \mathbb{R}^{n}: g_{i}(u) \leq 0, h_{j}(u)=0,1 \leq i \leq m, 1 \leq j \leq l\right\}$ denote the feasible set. The condition

$$
\exists u \in U \text { s.t. } g_{i}(u)<0, h_{j}(u)=0, \forall 1 \leq i \leq m, 1 \leq j \leq l
$$

is called Slater's condition
Definition (Polar cone). For a set C, the polar cone of C is defined as

$$
C^{o}=\{y \in \mathbb{E}:\langle y, d\rangle, \forall d \in C\} .
$$

Definition (Tangent cone). Let $U \subset \mathbb{E}$ be convex and $u \in U$. Then the tangent cone $T_{U}(u)$ is defined as

$$
T_{U}(u)=\left\{d \in \mathbb{E}: \exists u_{i} \in U \text { with } u_{i} \rightarrow u \text { and } \exists t_{i} \rightarrow 0^{+} \text {, s.t. } \lim _{i \rightarrow+\infty} \frac{u_{i}-u}{t_{i}}=d\right\}
$$

Now consider following constrainted optimization problem:

$$
\begin{array}{rl}
\min _{u} & J(u) \\
\text { s.t. } & g_{i}(u) \leq 0, \\
& h_{j}(u)=A u+b=0, \quad j=1, \ldots, m \\
\end{array}
$$

where J and g_{i} are continuously differentiable and convex functions and h_{j} are affine linear. Let U be the feasible set defined as before and $U_{1}:=\left\{u \in \mathbb{R}^{n}: G(u) \leq 0\right\}$ and $U_{2}:=\left\{u \in \mathbb{R}^{n}: H(u)=0\right\}$. Assume Slater's condition holds in U.

1. Using following theorem:

Theorem 1. Let f_{1}, \ldots, f_{n} are proper convex functions on \mathbb{R}^{n}, and let $f=$ $f_{1}+\cdots+f_{m}$. If the convex sets $\operatorname{ri}\left(\operatorname{dom} f_{i}\right), i=1, \ldots, m$ have a point in common, then

$$
\partial f(u)=\partial f_{1}(u)+\cdots+\partial f_{n}(u), \forall u
$$

prove that $N_{U}(u)=N_{U_{1}}(u)+N_{U_{2}}(u)$ where $N_{U}(u)$ is the normal cone of U at u.
2. Prove that $N_{U_{2}}(u)=\left\{\sum_{j=1}^{l} \mu_{j} \nabla h_{j}(u): \mu \in \mathbb{R}^{l}\right\}$.
3. Deduce that $T_{U_{1}}(u)=\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq 0\right\}$, where $\mathcal{A}(u)=\left\{i: g_{i}(u)=\right.$ $0, i=1, \ldots, m\}$ is called active set.
Hint: Firstly, show that $\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq 0\right\} \subset \operatorname{cl}\left(\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d<\right.\right.$ $0\}) \subset T_{U_{1}}(u)$. For the first " \subset " relation, consider the linear combination of a boundary point and an inner point. Then show $T_{U_{1}}(u) \subset\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq\right.$ $0\}$.
4. Show that $N_{U_{1}}(u)=\left\{\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(u): \lambda_{i} \geq 0, \lambda_{i} g_{i}(u)=0, i=1, \ldots, m\right\}$. You can use following two theorems:

Theorem 2. If a set $C \subset \mathbb{E}$ is closed and convex, then the bipolar cone is itself i.e. $C^{o o}=C$.

Theorem 3. Let $C \subset \mathbb{E}$ be a nonempty, convex set and let $u \in C$. Then the normal cone of C at u is the polar cone of the tangent cone of C at u. That is

$$
N_{c}(u)=\left(T_{c}(u)\right)^{o} .
$$

5. Show that $u^{*} \in U$ satisfies that $-\nabla J\left(u^{*}\right) \in N_{U}\left(u^{*}\right)$ if and only if u^{*} is a minimizer.
