Lecture: Dr. Tao Wu
Exercises: Emanuel Laude, Zhenzhang Ye
Summer Semester 2018

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 1

Room: 02.09.023
Wednesday, 25.04.2018, 12:15-14:00
Submission deadline: Monday, 23.04.2018, 16:15, Room 02.09.023

Theory: Convex Sets

Exercise 1 (4 Points). Let \mathcal{C} be a family of convex sets in $\mathbb{R}^{n}, C_{1}, C_{2} \in \mathcal{C}, A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}, \lambda \in \mathbb{R}$. Prove convexity of the following sets:

- $\cap_{C \in \mathcal{C}} C$
- $P:=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$
- $C_{1}+C_{2}:=\left\{x+y: x \in C_{1}, y \in C_{2}\right\}$ (the Minkowski sum of C_{1} and C_{2})
- $\lambda C_{1}:=\left\{\lambda x: x \in C_{1}\right\}$ (the λ-dilatation of C_{1}).

Solution.

- Let $x_{1}, x_{2} \in \bigcap_{C \in \mathcal{C}} C$. Then $x_{1}, x_{2} \in C$ for all $C \in \mathcal{C}$. Since any C is convex, $\mu x_{1}+(1-\mu) x_{2} \in C$ for all $\mu \in[0,1]$ and $C \in \mathcal{C}$ and therefore $\mu x_{1}+(1-\mu) x_{2} \in$ $\bigcap_{C \in \mathcal{C}} C$.
- Let $x_{1}, x_{2} \in P$, which means that $A x_{1} \leq b$ and $A x_{2} \leq b$. Let $\mu \in[0,1]$. Then, $A\left(\mu x_{1}+(1-\mu) x_{2}\right)=\mu A x_{1}+(1-\mu) A x_{2} \leq \mu b+(1-\mu) b=b$. Therefore $\mu x_{1}+(1-\mu) x_{2} \in P$.
- Let $x, y \in C_{1}+C_{2}$. Then there exist $x_{1}, y_{1} \in C_{1}, x_{2}, y_{2} \in C_{2}$ so that $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$. Let $\mu \in[0,1]$. Then, since C_{1}, C_{2} convex $\mu x+(1-\mu) y=$ $\mu x_{1}+\mu x_{2}+(1-\mu) y_{1}+(1-\mu) y_{2}=\underbrace{\mu x_{1}+(1-\mu) y_{1}}_{\in C_{1}}+\underbrace{\mu x_{2}+(1-\mu) y_{2}}_{\in C_{2}} \in C_{1}+C_{2}$.
- Let $x, y \in C_{1}$ and $\mu \in[0,1]$. Then, since C_{1} convex, $\mu \lambda x+(1-\mu) \lambda y=$ $\lambda \underbrace{(\mu x+(1-\mu) y)}_{\in C_{1}} \in \lambda C_{1}$.

Exercise 2 (4 Points). Let $\emptyset \neq X \subset \mathbb{R}^{n}$. Prove the equivalence of the following statements:

- X is closed.
- Every convergent sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X given as $X_{C}:=\mathbb{R}^{n} \backslash X$ is open meaning that for all $x \in X_{C}$ there exists $\epsilon>0$ s.t. the ball $B_{\epsilon}(x)$ is entirely contained in X_{C} :

$$
B_{\epsilon}(x) \cap X=\emptyset .
$$

Suppose that there exists a convergent sequence $X \supset\left\{x_{n}\right\}_{n \in \mathbb{N}} \rightarrow x$ with $x \notin X$. However, by definition of convergence for all $\epsilon>0$ there exists $N \in \mathbb{N}$ s.t.

$$
X \ni x_{n} \in B_{\epsilon}(x)
$$

for all $n \geq N$, which contradicts the assumption. Let conversely X not be closed (not the same as open). That means there exists $x \notin X$ s.t. for all $\epsilon>0$ it holds that $B_{\epsilon}(x) \cap X \neq \emptyset$. This means that for all $\epsilon_{n}:=\frac{1}{n}>0$ there exists $x_{n} \in B_{\epsilon}(x) \cap X$. By construction we have a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converging to $x \notin X$ but with elements in X.

Exercise 3 (4 Points). Prove that if the set $C \subset \mathbb{R}^{n}$ is convex, then $\sum_{i=1}^{N} \lambda_{i} x_{i} \in C$ with $x_{1}, x_{2}, \ldots, x_{N} \in C$ and $0 \leq \lambda_{1}, \lambda_{2}, \ldots, \lambda_{N} \in \mathbb{R}, \sum_{i=1}^{N} \lambda_{i}=1$.

Hint: Use induction to prove.
Solution. When $\mathrm{N}=2$, it directly follows the definition of convex set.
Assume it holds for N . Now consider $\mathrm{N}+1$ case:

$$
\sum_{i=1}^{N+1} \lambda_{i} x_{i}=\sum_{i=1}^{N} \lambda_{i} x_{i}+\lambda_{N+1} x_{N+1}
$$

If there exists a certain i such that $\lambda_{i}=0$, it will be N case which is assumed to hold. Therefore, all $\lambda_{i}>0$ and above equation turns into:

$$
\left(1-\lambda_{N+1}\right) \sum_{i=1}^{N} \frac{\lambda_{i}}{1-\lambda_{N+1}} x_{i}+\lambda_{N+1} x_{N+1}
$$

Using our assumption, $\sum_{i=1}^{N} \frac{\lambda_{i}}{1-\lambda_{N+1}} x_{i}$ is an element in C. Therefore, the convexity is proved.

Definition (Convex Hull). The convex hull conv (S) of a finite set of points $S \subset \mathbb{R}^{n}$ is defined as

$$
\operatorname{conv}(S):=\left\{\sum_{i=1}^{|S|} a_{i} x_{i}: x_{i} \in S, \sum_{i=1}^{|S|} a_{i}=1, a_{i} \geq 0\right\}
$$

Exercise 4 (8 Points). Prove the following statement: Let $n \in \mathbb{N}$ and let $A \subset \mathbb{R}^{n}$ contain $n+2$ elements: $|A|=n+2$. Then there exists a partition of A into two disjoint sets A_{1}, A_{2}

$$
A=A_{1} \dot{\cup} A_{2}
$$

(meaning that $A_{1} \cap A_{2}=\emptyset$) so that the convex hulls of A_{1} and A_{2} intersect:

$$
\operatorname{conv}\left(A_{1}\right) \cap \operatorname{conv}\left(A_{2}\right) \neq \emptyset
$$

You may use the following hint. Don't forget to prove the hint!
Hint: Let $x_{1}, \ldots, x_{n+2} \in \mathbb{R}^{n}$. Then the set $\left\{x_{1}-x_{n+2}, \ldots, x_{n+1}-x_{n+2}\right\}$ is linearly dependent and there exist multipliers a_{1}, \ldots, a_{n+2}, not all of which are zero, so that

$$
\sum_{i=1}^{n+2} a_{i} x_{i}=0, \quad \sum_{i=1}^{n+2} a_{i}=0
$$

The desired partition is formed via all points corresponding with $a_{i} \geq 0$ and all points with $a_{i}<0$.

Solution. Let $A:=\left\{x_{1}, x_{2}, \ldots, x_{n+2}\right\} \subset \mathbb{R}^{n}$. Since $n+1$ vectors in \mathbb{R}^{n} are always linearly dependent there exist scalars a_{1}, \ldots, a_{n+1}, not all of which are zero so that

$$
\sum_{i=1}^{n+1} a_{i}\left(x_{i}-x_{n+2}\right)=\sum_{i=1}^{n+1} a_{i} x_{i}+\underbrace{\left(-\sum_{i=1}^{n+1} a_{i}\right)}_{=: a_{n+2}} x_{n+2}=0
$$

Then, by construction $\sum_{i=1}^{n+2} a_{i}=0$. Define $A_{1}:=\left\{x_{i}: a_{i}>0\right\}$ and $A_{2}:=\left\{x_{j}: a_{j} \leq\right.$ $0\}$. Clearly, $A=A_{1} \dot{\cup} A_{2}$ forms a partition and A_{1}, A_{2} are both nonempty. Suppose A_{2} was empty. Then $a_{i}>0$ for all $1 \leq i \leq n+2$. But $a_{n+2}:=-\sum_{i=1}^{n+1} a_{i}<0$ contradicts this assumption (The same holds for A_{1}). We have that

$$
0=\sum_{\left\{i: a_{i}<0\right\}} a_{i} x_{i}+\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j} x_{j} \Longleftrightarrow \sum_{\left\{i: a_{i}<0\right\}} \underbrace{-a_{i}}_{\geq 0} x_{i}=\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j} x_{j}
$$

and on the other hand

$$
0=\sum_{\left\{:: a_{i}<0\right\}} a_{i}+\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j} \Longleftrightarrow \sum_{\left\{:: a_{i}<0\right\}}-a_{i}=\sum_{\left\{j: a_{j} \geq 0\right\}} a_{j}=: w>0 .
$$

Altogether this yields

$$
\underbrace{\sum_{\left\{i: a_{i}<0\right\}} \frac{-a_{i}}{w} x_{i}}_{\in \operatorname{conv}\left(A_{1}\right)}=\underbrace{\sum_{\left\{j: a_{j} \geq 0\right\}} \frac{a_{j}}{w} x_{j}}_{\in \operatorname{conv}\left(A_{2}\right)}
$$

which completes the proof. The theorem is called Radon's Theorem.

