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Theory: Convex Sets (12+8 Points)
Exercise 1 (4 Points). Let C be a family of convex sets in Rn, C1, C2 ∈ C, A ∈ Rm×n,
b ∈ Rm, λ ∈ R. Prove convexity of the following sets:

•
⋂
C∈C C

• P := {x ∈ Rn : Ax ≤ b}

• C1 + C2 := {x+ y : x ∈ C1, y ∈ C2} (the Minkowski sum of C1 and C2)

• λC1 := {λx : x ∈ C1} (the λ-dilatation of C1).

Solution.

• Let x1, x2 ∈
⋂
C∈C C. Then x1, x2 ∈ C for all C ∈ C. Since any C is convex,

µx1+(1−µ)x2 ∈ C for all µ ∈ [0, 1] and C ∈ C and therefore µx1+(1−µ)x2 ∈⋂
C∈C C.

• Let x1, x2 ∈ P , which means that Ax1 ≤ b and Ax2 ≤ b. Let µ ∈ [0, 1]. Then,
A(µx1 + (1 − µ)x2) = µAx1 + (1 − µ)Ax2 ≤ µb + (1 − µ)b = b. Therefore
µx1 + (1− µ)x2 ∈ P .

• Let x, y ∈ C1+C2. Then there exist x1, y1 ∈ C1, x2, y2 ∈ C2 so that x = x1+x2
and y = y1 + y2. Let µ ∈ [0, 1]. Then, since C1, C2 convex µx + (1 − µ)y =
µx1+µx2+(1−µ)y1+(1−µ)y2 = µx1 + (1− µ)y1︸ ︷︷ ︸

∈C1

+µx2 + (1− µ)y2︸ ︷︷ ︸
∈C2

∈ C1+C2.

• Let x, y ∈ C1 and µ ∈ [0, 1]. Then, since C1 convex, µλx + (1 − µ)λy =
λ (µx+ (1− µ)y)︸ ︷︷ ︸

∈C1

∈ λC1.

Exercise 2 (4 Points). Let ∅ 6= X ⊂ Rn. Prove the equivalence of the following
statements:

• X is closed.
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• Every convergent sequence {xn}n∈N ⊂ X attains its limit in X.

Solution. Let X be closed. By definition this means that the complement of X
given as XC := Rn \X is open meaning that for all x ∈ XC there exists ε > 0 s.t.
the ball Bε(x) is entirely contained in XC :

Bε(x) ∩X = ∅.

Suppose that there exists a convergent sequence X ⊃ {xn}n∈N → x with x /∈ X.
However, by definition of convergence for all ε > 0 there exists N ∈ N s.t.

X 3 xn ∈ Bε(x)

for all n ≥ N , which contradicts the assumption. Let conversely X not be closed
(not the same as open). That means there exists x /∈ X s.t. for all ε > 0 it holds
that Bε(x)∩X 6= ∅. This means that for all εn := 1

n
> 0 there exists xn ∈ Bε(x)∩X.

By construction we have a sequence {xn}n∈N converging to x /∈ X but with elements
in X.

Exercise 3 (4 Points). Prove that if the set C ⊂ Rn is convex, then
∑N

i=1 λixi ∈ C
with x1, x2, . . . , xN ∈ C and 0 ≤ λ1, λ2, . . . , λN ∈ R,

∑N
i=1 λi = 1.

Hint: Use induction to prove.

Solution. When N=2, it directly follows the definition of convex set.
Assume it holds for N. Now consider N+1 case:

N+1∑
i=1

λixi =
N∑
i=1

λixi + λN+1xN+1

If there exists a certain i such that λi = 0, it will be N case which is assumed to
hold. Therefore, all λi > 0 and above equation turns into:

(1− λN+1)
N∑
i=1

λi
1− λN+1

xi + λN+1xN+1

Using our assumption,
∑N

i=1
λi

1−λN+1
xi is an element in C. Therefore, the convexity

is proved.

Definition (Convex Hull). The convex hull conv(S) of a finite set of points S ⊂ Rn

is defined as

conv(S) :=


|S|∑
i=1

aixi : xi ∈ S,
|S|∑
i=1

ai = 1, ai ≥ 0


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Exercise 4 (8 Points). Prove the following statement: Let n ∈ N and let A ⊂ Rn

contain n + 2 elements: |A| = n + 2. Then there exists a partition of A into two
disjoint sets A1, A2

A = A1∪̇A2,

(meaning that A1 ∩ A2 = ∅) so that the convex hulls of A1 and A2 intersect:

conv(A1) ∩ conv(A2) 6= ∅.

You may use the following hint. Don’t forget to prove the hint!
Hint: Let x1, . . . , xn+2 ∈ Rn. Then the set {x1−xn+2, . . . , xn+1−xn+2} is linearly

dependent and there exist multipliers a1, . . . , an+2, not all of which are zero, so that

n+2∑
i=1

aixi = 0,
n+2∑
i=1

ai = 0.

The desired partition is formed via all points corresponding with ai ≥ 0 and all
points with ai < 0.

Solution. Let A := {x1, x2, . . . , xn+2} ⊂ Rn. Since n + 1 vectors in Rn are always
linearly dependent there exist scalars a1, . . . , an+1, not all of which are zero so that

n+1∑
i=1

ai(xi − xn+2) =
n+1∑
i=1

aixi +

(
−

n+1∑
i=1

ai

)
︸ ︷︷ ︸

=:an+2

xn+2 = 0.

Then, by construction
∑n+2

i=1 ai = 0. Define A1 := {xi : ai > 0} and A2 := {xj : aj ≤
0}. Clearly, A = A1∪̇A2 forms a partition and A1, A2 are both nonempty. Suppose
A2 was empty. Then ai > 0 for all 1 ≤ i ≤ n + 2. But an+2 := −

∑n+1
i=1 ai < 0

contradicts this assumption (The same holds for A1). We have that

0 =
∑
{i:ai<0}

aixi +
∑
{j:aj≥0}

ajxj ⇐⇒
∑
{i:ai<0}

−ai︸︷︷︸
≥0

xi =
∑
{j:aj≥0}

ajxj,

and on the other hand

0 =
∑
{i:ai<0}

ai +
∑
{j:aj≥0}

aj ⇐⇒
∑
{i:ai<0}

−ai =
∑
{j:aj≥0}

aj =: w > 0.

Altogether this yields ∑
{i:ai<0}

−ai
w
xi︸ ︷︷ ︸

∈conv(A1)

=
∑
{j:aj≥0}

aj
w
xj︸ ︷︷ ︸

∈conv(A2)

,

which completes the proof. The theorem is called Radon’s Theorem.
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