Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu Exercises: Emanuel Laude, Zhenzhang Ye Summer Semester 2018 Computer Vision Group Institut für Informatik Technische Universität München

Weekly Exercises 2

Room: 02.09.023 Wednesday, 02.05.2018, 12:15-14:00 Submission deadline: Monday, 30.04.2018, 16:15, Room 02.09.023

Convex sets and functions (12 Points + 4 Bonus)

Exercise 1 (4 Points). Let $J : \mathbb{E} \to \mathbb{R}$ be proper. Prove the equivalence of the following statements:

• J is convex.

•
$$\operatorname{epi}(J) := \left\{ \begin{pmatrix} u \\ \alpha \end{pmatrix} \in \mathbb{E} \times \mathbb{R} : J(u) \le \alpha \right\}$$
 is convex.

Solution. Let J be convex, $\lambda \in [0,1]$ and $(u_1, \alpha_1), (u_2, \alpha_2) \in \operatorname{epi}(J)$. This means $J(u_1) \leq \alpha_1 < \infty$ and $J(u_2) \leq \alpha_2 < \infty$ and therefore $u_1, u_2 \in \operatorname{dom}(J)$. Due to the convexity of J we have that:

1. dom(J) convex and therefore $\lambda u_1 + (1 - \lambda)u_2 \in \text{dom}(J)$, and

2.
$$J(\lambda u_1 + (1-\lambda)u_2) \le \lambda J(u_1) + (1-\lambda)J(u_2) \le \lambda \alpha_1 + (1-\lambda)\alpha_2.$$

This means that

$$\begin{pmatrix} \lambda u_1 + (1-\lambda)u_2\\ \lambda \alpha_1 + (1-\lambda)\alpha_2 \end{pmatrix} = \lambda \begin{pmatrix} u_1\\ \alpha_1 \end{pmatrix} + (1-\lambda) \begin{pmatrix} u_2\\ \alpha_2 \end{pmatrix} \in \operatorname{epi}(J)$$

and therefore $\operatorname{epi}(J)$ convex. Let conversely $\operatorname{epi}(J)$ be convex and $u_1, u_2 \in \operatorname{dom}(J) := \{u \in \mathbb{E} : J(u) < \infty\}$. By definition of the epigraph set $(u_1, J(u_1)), (u_2, J(u_2)) \in \operatorname{epi}(J)$ and due to the convexity of $\operatorname{epi}(J)$

$$\lambda \begin{pmatrix} u_1 \\ J(u_1) \end{pmatrix} + (1-\lambda) \begin{pmatrix} u_2 \\ J(u_2) \end{pmatrix} \in \operatorname{epi}(J).$$

This means

$$J(\lambda u_1 + (1-\lambda)u_2) \le \lambda J(u_1) + (1-\lambda)J(u_2).$$

It remains to show that dom(J) is convex. We have:

$$dom(J) = \{ u \in \mathbb{E} : J(u) < \infty \}$$
$$= \{ u \in \mathbb{E} : \exists \alpha \in \mathbb{R} : J(u) \le \alpha \}$$
$$= \{ u \in \mathbb{E} : \exists \alpha \in \mathbb{R} \text{ s.t. } (u, \alpha) \in \operatorname{epi}(J) \}$$

Since epi(J) is convex it immediatly follows, that dom(J) is convex. Overall this proves that J convex.

Exercise 2 (4 Points). Show that the following functions $J : \mathbb{R}^n \to \overline{\mathbb{R}}$ are convex:

- J(u) = ||u||, for any norm $||\cdot||$ over a normed vector space.
- J(u) = F(Ku), for convex $F : \mathbb{R}^n \to \overline{\mathbb{R}}$ and linear $K : \mathbb{R}^m \to \mathbb{R}^n$.
- (Jensen's inequality) J is convex iff

$$J\left(\sum_{i=1}^{n} \alpha_{i} u^{i}\right) \leq \sum_{i=1}^{n} \alpha_{i} J(u^{i}),$$

whenever $\{u^i\}_{i=1}^n \subset \mathbb{R}^n, \, \{\alpha_i\}_{i=1}^n \subset [0,1], \, \sum_{i=1}^n \alpha_i = 1.$

Solution.

• Take
$$u, v \in \mathbb{R}^n, \lambda \in [0, 1]$$
:

$$J(\lambda u + (1 - \alpha)v) = \|\lambda u + (1 - \lambda)v\| \le \|\lambda u\| + \|(1 - \lambda)v\| = \lambda \|u\| + (1 - \lambda) \|v\|.$$
(1)

• Take $u, v \in \text{dom}(J), \lambda \in [0, 1].$

$$J(\lambda u + (1 - \lambda)v) := F(K(\lambda u + (1 - \lambda)v)) =$$

$$F(\lambda K u + (1 - \lambda)Kv)) \leq \lambda F(Ku) + (1 - \lambda)F(Kv) = \underbrace{\lambda J(u) + (1 - \lambda)J(v)}_{<\infty, \text{ since } u, v \in \text{dom}(J)}$$
(2)

This shows that J is convex on its domain and dom(J) is a convex set.

- " \Leftarrow ": For n = 2 it is precisely the definition of convexity.
- " \Rightarrow ": We prove this statement using induction. The cases n = 1 and n = 2 are trivial. Now assume the inequality holds for some $n \ge 1$. Without loss of generality we can assume $\alpha_{n+1} \ne 0$, since the case $\alpha_{n+1} = 0$ follows directly from the assumption.

$$J\left(\sum_{i=1}^{n+1} \alpha_{i} u_{i}\right) = J\left(\sum_{i=1}^{n} \alpha_{i} u_{i} + \alpha_{n+1} u_{n+1}\right)$$

$$= J\left((1 - \alpha_{n+1}) \sum_{i=1}^{n} \frac{\alpha_{i}}{1 - \alpha_{n+1}} u_{i} + \alpha_{n+1} u_{n+1}\right)$$

$$\leq (1 - \alpha_{n+1}) J\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{1 - \alpha_{n+1}} u_{i}\right) + \alpha_{n+1} J(u_{n+1}) \qquad (3)$$

$$\leq (1 - \alpha_{n+1}) \sum_{i=1}^{n} \frac{\alpha_{i}}{1 - \alpha_{n+1}} J(u_{i}) + \alpha_{n+1} J(u_{n+1})$$

$$= \sum_{i=1}^{n} \alpha_{i} J(u_{i}) + \alpha_{n+1} J(u_{n+1}) = \sum_{i=1}^{n+1} \alpha_{i} J(u_{i}).$$

Hence it also holds for n + 1 and by the principle of induction we are finished.

Exercise 3 (4 Points). Let $U \subset \mathbb{E}$ open and convex and let $J : U \to \mathbb{R}$ be twice continuously differentiable. Prove the equivalence of the following statements:

- J is convex.
- For all $u \in U$ the Hessian $\nabla^2 J(u)$ is positive semidefinite $(\forall v \in \mathbb{E} : v^\top \nabla^2 J(u)v \ge 0)$.

Hints: You can use that for $u, v \in U$ it holds that J is convex iff

$$(v-u)^{\top} \nabla J(u) \le J(v) - J(u).$$

Further recall that there are two variants of the Taylor expansion:

$$J(u+td) = J(u) + td^{\top}\nabla J(u) + \frac{t^2}{2}d^{\top}\nabla^2 J(u)d + o(t^2)$$

with $\lim_{t\to 0} \frac{o(t^2)}{t^2} = 0$ and

$$J(u+d) = J(u) + d^{\top} \nabla J(u) + \frac{1}{2} d^{\top} \nabla^2 J(u+td) d$$

for appropriate $t \in (0, 1)$.

Solution. Let J be convex, $u \in U$ and $d \in \mathbb{R}^n$. Since U is open there exists $\tau > 0$ s.t. for all $t \in (0, \tau]$ we have that $u + td \in U$. Using the Taylor expansion given in the hint we obtain

$$0 \stackrel{\text{Hint}}{\leq} J(u+td) - J(u) - td^{\top} \nabla J(u) = \frac{t^2}{2} d^{\top} \nabla^2 J(u) d + o(t^2)$$

Multiplying both sides with $\frac{2}{t^2}$ yields

$$0 \le d^{\top} \nabla^2 J(u) d + 2 \underbrace{\frac{o(t^2)}{t^2}}_{\to 0}.$$

Let conversely $\nabla^2 J(z)$ be positive semidefinite for all $z \in U$ and let $u, v \in X$. Using the Taylor expansion we have

$$J(v) = J(u + (v - u)) = J(u) + (v - u)^{\top} \nabla J(u) + \frac{1}{2} \underbrace{(v - u)^{\top} \nabla^2 J(u + t(v - u))(v - u)}_{\geq 0 \text{ by assumption.}}$$

and therefore

$$J(v) - J(u) \ge (v - u)^{\top} \nabla J(u),$$

which means that J is convex.

Exercise 4 (4 points). Prove the following statement using induction over m: Let $K_1, \ldots, K_m \subset \mathbb{R}^n, m \ge n+1$, be convex, such that for all $\mathcal{I} \subset \{1, \ldots, m\}$ with $|\mathcal{I}| = n+1$ it holds that $\bigcap_{i \in \mathcal{I}} K_i \neq \emptyset$. Then $\bigcap_{i=1}^m K_i \neq \emptyset$.

Hint: Use exercise 4 from the first exercise sheet.

Solution. <u>Base case:</u> for m = n + 1 the statement clearly holds.

Inductive step: $m \to m+1$. For any $\mathcal{I} \subset \{1, \ldots, m+1\}$ with $|\mathcal{I}| = n+1$ assume that $\bigcap_{i \in \mathcal{I}} K_i \neq \emptyset$. Fix $j \in \{1, 2, \ldots, m+1\}$. The assumption implies that for all $\mathcal{I}' \subset \{1, \ldots, m+1\} \setminus \{j\}$ with $|\mathcal{I}'| = n+1$ it holds that $\bigcap_{i \in \mathcal{I}'} K_i \neq \emptyset$. We may now apply the induction hypothesis to the sets K_1, \ldots, K_{m+1} excluding K_j and the sets \mathcal{I}' and conclude that for any $\mathcal{J} \subset \{1, \ldots, m+1\}$ with $\mathcal{J} \neq \emptyset$:

$$x_j \in \bigcap_{i=1, i \neq j}^{m+1} K_i \subset \begin{cases} \bigcap_{i \in \mathcal{J}} K_i & \text{if } j \notin \mathcal{J} \\ \bigcap_{i \notin \mathcal{J}} K_i & \text{if } j \in \mathcal{J}. \end{cases}$$

Now, consider the partitions $A_1 := \{x_j : j \notin \mathcal{J}\}, A_2 := \{x_j : j \in \mathcal{J}\}$ of the set $A := \{x_1, x_2, \cdots, x_{m+1}\}$ determined via \mathcal{J} . Since $m+1 \ge n+2$ we know from exercise 4 of the last sheet that there exists an $\mathcal{J}' \subset \{1, \ldots, m+1\}$ (the proof can easily be adapted to the more general case $m+1 \ge n+2$) so that $\operatorname{conv}(A_1) \cap \operatorname{conv}(A_2) \neq \emptyset$. Since the K_i are convex and the intersection of convex sets is convex we have that $\operatorname{conv}(A_1) \subset \bigcap_{i \in \mathcal{J}'} K_i$ and $\operatorname{conv}(A_2) \subset \bigcap_{i \notin \mathcal{J}'} K_i$. Overall we have that

$$\emptyset \neq \operatorname{conv}(A_1) \cap \operatorname{conv}(A_2) \subset \bigcap_{i \in \mathcal{J}'} K_i \cap \bigcap_{i \notin \mathcal{J}'} K_i = \bigcap_{i=1}^{m+1} K_i.$$

The theorem is called Helly's Theorem.

Programming: Inpainting(Due date: 07.05) (12 Points)

Exercise 5 (12 Points). Write a MATLAB program that solves the inpainting problem for the vegetable image:

$$\min_{u \in \mathbb{R}^{n \times m}} \sum_{i,j} (u_{i,j} - u_{i-1,j})^2 + (u_{i,j} - u_{i,j-1})^2 \quad \text{s.t.} \ u_{i,j} = f_{i,j} \ \forall (i,j) \in I,$$

with index set I of pixels to keep. Those can be identified as the white pixels of the mask image.

Hint: The constrained optimization problem can be reformulated so that it becomes unconstrained: Rewrite the objective as a least squares problem in terms of the unknown intensities $u_{i,j}$, $(i, j) \notin I$ using sparse linear operators: Find linear operators X, Y s.t. u can be decomposed as

$$u = X\tilde{u} + Yf$$

where \tilde{u} contains only the unknown intensities. Optimize for \tilde{u} instead of u. You may use MATALBs mldivide.