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Convex sets and functions (12 Points + 4 Bonus)
Exercise 1 (4 Points). Let J : E → R̄ be proper. Prove the equivalence of the
following statements:

• J is convex.

• epi(J) :=

{(
u
α

)
∈ E× R : J(u) ≤ α

}
is convex.

Solution. Let J be convex, λ ∈ [0, 1] and (u1, α1), (u2, α2) ∈ epi(J). This means
J(u1) ≤ α1 < ∞ and J(u2) ≤ α2 < ∞ and therefore u1, u2 ∈ dom(J). Due to the
convexity of J we have that:

1. dom(J) convex and therefore λu1 + (1− λ)u2 ∈ dom(J), and

2. J(λu1 + (1− λ)u2) ≤ λJ(u1) + (1− λ)J(u2) ≤ λα1 + (1− λ)α2.

This means that(
λu1 + (1− λ)u2
λα1 + (1− λ)α2

)
= λ

(
u1
α1

)
+ (1− λ)

(
u2
α2

)
∈ epi(J)

and therefore epi(J) convex. Let conversely epi(J) be convex and u1, u2 ∈ dom(J) :=
{u ∈ E : J(u) < ∞}. By definition of the epigraph set (u1, J(u1)), (u2, J(u2)) ∈
epi(J) and due to the convexity of epi(J)

λ

(
u1

J(u1)

)
+ (1− λ)

(
u2

J(u2)

)
∈ epi(J).

This means
J(λu1 + (1− λ)u2) ≤ λJ(u1) + (1− λ)J(u2).

It remains to show that dom(J) is convex. We have:

dom(J) = {u ∈ E : J(u) <∞}
= {u ∈ E : ∃α ∈ R : J(u) ≤ α}
= {u ∈ E : ∃α ∈ R s.t. (u, α) ∈ epi(J)}

Since epi(J) is convex it immediatly follows, that dom(J) is convex. Overall this
proves that J convex.
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Exercise 2 (4 Points). Show that the following functions J : Rn → R are convex:

• J(u) = ‖u‖, for any norm ‖·‖ over a normed vector space.

• J(u) = F (Ku), for convex F : Rn → R and linear K : Rm → Rn.

• (Jensen’s inequality) J is convex iff

J

(
n∑

i=1

αiu
i

)
≤

n∑
i=1

αiJ(ui),

whenever {ui}ni=1 ⊂ Rn, {αi}ni=1 ⊂ [0, 1],
∑n

i=1 αi = 1.

Solution.

• Take u, v ∈ Rn, λ ∈ [0, 1]:

J(λu+ (1− α)v) = ‖λu+ (1− λ)v‖ ≤
‖λu‖+ ‖(1− λ)v‖ = λ ‖u‖+ (1− λ) ‖v‖ .

(1)

• Take u, v ∈ dom(J), λ ∈ [0, 1].

J(λu+ (1− λ)v) := F (K(λu+ (1− λ)v) =

F (λKu+ (1− λ)Kv)) ≤
λF (Ku) + (1− λ)F (Kv) = λJ(u) + (1− λ)J(v)︸ ︷︷ ︸

<∞, since u,v∈dom(J)

(2)

This shows that J is convex on its domain and dom(J) is a convex set.

• “⇐”: For n = 2 it is precisely the definition of convexity.
“⇒”: We prove this statement using induction. The cases n = 1 and n = 2
are trivial. Now assume the inequality holds for some n ≥ 1. Without loss of
generality we can assume αn+1 6= 0, since the case αn+1 = 0 follows directly
from the assumption.

J

(
n+1∑
i=1

αiui

)
= J

(
n∑

i=1

αiui + αn+1un+1

)

= J

(
(1− αn+1)

n∑
i=1

αi

1− αn+1

ui + αn+1un+1

)

≤ (1− αn+1)J

(
n∑

i=1

αi

1− αn+1

ui

)
+ αn+1J(un+1)

≤ (1− αn+1)
n∑

i=1

αi

1− αn+1

J(ui) + αn+1J(un+1)

=
n∑

i=1

αiJ(ui) + αn+1J(un+1) =
n+1∑
i=1

αiJ(ui).

(3)

Hence it also holds for n+ 1 and by the principle of induction we are finished.
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Exercise 3 (4 Points). Let U ⊂ E open and convex and let J : U → R be twice
continuously differentiable. Prove the equivalence of the following statements:

• J is convex.

• For all u ∈ U the Hessian∇2J(u) is positive semidefinite (∀ v ∈ E : v>∇2J(u)v ≥
0).

Hints: You can use that for u, v ∈ U it holds that J is convex iff

(v − u)>∇J(u) ≤ J(v)− J(u).

Further recall that there are two variants of the Taylor expansion:

J(u+ td) = J(u) + td>∇J(u) +
t2

2
d>∇2J(u)d+ o(t2)

with limt→0
o(t2)
t2

= 0 and

J(u+ d) = J(u) + d>∇J(u) +
1

2
d>∇2J(u+ td)d

for appropriate t ∈ (0, 1).

Solution. Let J be convex, u ∈ U and d ∈ Rn. Since U is open there exists τ > 0
s.t. for all t ∈ (0, τ ] we have that u + td ∈ U . Using the Taylor expansion given in
the hint we obtain

0
Hint
≤ J(u+ td)− J(u)− td>∇J(u) =

t2

2
d>∇2J(u)d+ o(t2)

Multiplying both sides with 2
t2

yields

0 ≤ d>∇2J(u)d+ 2
o(t2)

t2︸ ︷︷ ︸
→0

.

Let conversely ∇2J(z) be positive semidefinite for all z ∈ U and let u, v ∈ X. Using
the Taylor expansion we have

J(v) = J(u+(v−u)) = J(u)+(v−u)>∇J(u)+
1

2
(v − u)>∇2J(u+ t(v − u))(v − u)︸ ︷︷ ︸

≥0 by assumption.

and therefore
J(v)− J(u) ≥ (v − u)>∇J(u),

which means that J is convex.

Exercise 4 (4 points). Prove the following statement using induction over m: Let
K1, . . . , Km ⊂ Rn, m ≥ n + 1, be convex, such that for all I ⊂ {1, . . . ,m} with
|I| = n+ 1 it holds that

⋂
i∈I Ki 6= ∅. Then

⋂m
i=1Ki 6= ∅.

Hint: Use exercise 4 from the first exercise sheet.
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Solution. Base case: for m = n+ 1 the statement clearly holds.
Inductive step: m → m + 1. For any I ⊂ {1, . . . ,m + 1} with |I| = n + 1

assume that
⋂

i∈I Ki 6= ∅. Fix j ∈ {1, 2, . . . ,m + 1}. The assumption implies that
for all I ′ ⊂ {1, . . . ,m + 1} \ {j} with |I ′| = n + 1 it holds that

⋂
i∈I′ Ki 6= ∅. We

may now apply the induction hypothesis to the sets K1, . . . , Km+1 excluding Kj and
the sets I ′ and conclude that for any J ⊂ {1, . . . ,m+ 1} with J 6= ∅:

xj ∈
m+1⋂

i=1,i 6=j

Ki ⊂

{⋂
i∈J Ki if j /∈ J⋂
i/∈J Ki if j ∈ J .

Now, consider the partitions A1 := {xj : j /∈ J }, A2 := {xj : j ∈ J } of the set
A := {x1, x2, · · ·xm+1} determined via J . Sincem+1 ≥ n+2 we know from exercise
4 of the last sheet that there exists an J ′ ⊂ {1, . . . ,m+ 1} (the proof can easily be
adapted to the more general case m+ 1 ≥ n+ 2) so that conv(A1) ∩ conv(A2) 6= ∅.
Since the Ki are convex and the intersection of convex sets is convex we have that
conv(A1) ⊂

⋂
i∈J ′ Ki and conv(A2) ⊂

⋂
i/∈J ′ Ki. Overall we have that

∅ 6= conv(A1) ∩ conv(A2) ⊂
⋂
i∈J ′

Ki ∩
⋂
i/∈J ′

Ki =
m+1⋂
i=1

Ki.

The theorem is called Helly’s Theorem.

Programming: Inpainting(Due date: 07.05) (12 Points)
Exercise 5 (12 Points). Write a MATLAB program that solves the inpainting
problem for the vegetable image:

min
u∈Rn×m

∑
i,j

(ui,j − ui−1,j)2 + (ui,j − ui,j−1)2 s.t. ui,j = fi,j ∀(i, j) ∈ I,

with index set I of pixels to keep. Those can be identified as the white pixels of the
mask image.
Hint: The constrained optimization problem can be reformulated so that it becomes
unconstrained: Rewrite the objective as a least squares problem in terms of the un-
known intensities ui,j, (i, j) /∈ I using sparse linear operators: Find linear operators
X, Y s.t. u can be decomposed as

u = Xũ+ Y f

where ũ contains only the unknown intensities. Optimize for ũ instead of u. You
may use MATALBs mldivide.
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