Lecture: Dr. Tao Wu
Exercises: Emanuel Laude, Zhenzhang Ye Summer Semester 2018

Computer Vision Group
Institut für Informatik Technische Universität München

Weekly Exercises 4

Room: 02.09.023
Wednesday, 16.05.2018, 12:15-14:00
Submission deadline: Monday, 14.05.2018, 16:15, Room 02.09.023

Convex cone

Exercise 1 (4 points). Assume $J: \mathbb{E} \rightarrow \mathbb{R}$, prove following facts of convex conjugate:

- $\tilde{J}(\cdot)=\alpha J(\cdot) \Rightarrow \tilde{J}^{*}(\cdot)=\alpha J^{*}(\cdot / \alpha), \alpha>0$.
- $\tilde{J}(\cdot)=J(\cdot-z) \Rightarrow \tilde{J}^{*}(\cdot)=J^{*}(\cdot)+\langle\cdot, z\rangle$.

Solution. - Using the definition of convex conjugate:

$$
\begin{aligned}
\tilde{J}(\cdot) & =\sup _{u}\langle u, \cdot\rangle-\tilde{J}(u) \\
& =\sup _{u}\langle u, \cdot\rangle-\alpha J(u) \\
& =\alpha \underbrace{\sup _{u}\langle u, \cdot / \alpha\rangle-J(u)}_{J^{*}(\cdot / \alpha)} \\
& =\alpha J^{*}(\cdot / \alpha)
\end{aligned}
$$

- $\tilde{J}(\cdot)=\sup _{u}\langle u, \cdot\rangle-J(u-z)$. Define $v=u-z$ and by substitution we have:

$$
\begin{aligned}
\tilde{J}(\cdot) & =\sup _{v}\langle v+z, \cdot\rangle+J(v) \\
& =\sup _{v}\langle v, \cdot\rangle+J(v)+\langle z, \cdot\rangle \\
& =J^{*}(\cdot)+\langle\cdot, z\rangle
\end{aligned}
$$

Exercise 2 (6 points). Assume $J: \mathbb{R}^{n} \rightarrow \mathbb{R}$, compute the convex conjugate of following functions:

- $J(u)=\frac{1}{q}| | u \|_{q}^{q}=\sum_{i=1}^{n} \frac{1}{q}\left|u_{i}\right|^{q}, q \in[1,+\infty]$.
- $J(u)=\sum_{i=1}^{n} u_{i} \log u_{i}+\delta_{\Delta^{n-1}}(u)$.
- $J(u)= \begin{cases}\frac{1}{2}\|u\|_{2}^{2}, & \|u\|_{2} \leq \epsilon \\ +\infty, & \text { otherwise }\end{cases}$

Solution. - $J^{*}(v)=\sup _{u}\langle u, v\rangle-J(u)$. Since it is separable, we apply first-order optimality condition elementwisely:

$$
\sup _{u_{i}}\left\langle u_{i}, v_{i}\right\rangle-\frac{1}{q}\left(\left|u_{i}\right|\right)^{q} \Rightarrow 0=v_{i}-\left|u_{i}\right|^{q-1} \operatorname{sign}\left(u_{i}\right) \Rightarrow u_{i}=\left|v_{i}\right|^{1 /(q-1)} \operatorname{sign}\left(v_{i}\right)
$$

Substitute u_{i} back to the first equation, we have

$$
\begin{aligned}
J^{*}(v)_{i} & =\left|v_{i}\right|^{q /(q-1)}-\frac{1}{q}\left|v_{i}\right|^{q /(q-1)} \\
& =\left(1-\frac{1}{q}\right)\left|v_{i}\right|^{q /(q-1)} \\
& =\left(1-\frac{1}{q}\right)\left|v_{i}\right|^{1 /\left(1-\frac{1}{q}\right)}
\end{aligned}
$$

Substituting $\frac{1}{p}=1-\frac{1}{q}$, we get $J^{*}(v)=\frac{1}{p}\|v\|_{p}^{p}$.

- Consider the convex conjugate elementwisely: $J^{*}(v)=\sup _{u} \sum_{i}^{n} u_{i} v_{i}-u_{i} \log u_{i}-$ $\delta_{\Delta^{n-1}}(u)$. Let's consider the following minimization problem given v_{i} :

$$
\begin{aligned}
& \min _{u} \sum_{i}^{n} u_{i} \log u_{i}-u_{i} v_{i} \\
& \text { s.t. } \mathbb{1} u=1
\end{aligned}
$$

where $\mathbb{1}=[1, \ldots, 1] \in \mathbb{R}^{n}$. It is obvious that this two problems share the same optimal variable u^{*} and the domain of \log implies $u_{i}>0$. Since the feasible set is compact and original energy function is continuous, the KKT condition holds on u^{*}. Therefore, we have certain $\lambda \in \mathbb{R}$ such that

$$
\log u_{i}^{*}+1-v_{i}+\lambda=0, \forall i=1, \ldots, n
$$

which give $u_{i}^{*}=\exp \left\{-\lambda+v_{i}-1\right\}$. Additionally, $\sum_{i=1}^{n} u_{i}^{*}=1$. We can get
$0=\log \left(\sum_{i=1}^{n} \exp \left\{-\lambda+v_{i}-1\right\}\right)=\log \left(\exp \{-\lambda-1\} \sum_{i=1}^{n} e^{v_{i}}\right)=(-\lambda-1)+\log \left(\sum_{i=1}^{n} e^{v_{i}}\right)$
Now, substitute u^{*} back into the convex conjugate and we can get

$$
\begin{aligned}
J(v)^{*} & =\sum_{i}^{n} \exp \left\{-\lambda+v_{i}-1\right\} v_{i}-\exp \left\{-\lambda+v_{i}-1\right\}\left(-\lambda+v_{i}-1\right) \\
& =\sum_{i}^{n}-\exp \left\{-\lambda+v_{i}-1\right\}(-\lambda-1) \\
& =-(-\lambda-1)=\log \left(\sum_{i=1}^{n} e^{v_{i}}\right)
\end{aligned}
$$

- Rewrite the convex conjugate as $J^{*}(v)=\sup _{\|u\|_{2} \leq \epsilon}\langle u, v\rangle-\frac{1}{2}\|u\|_{2}^{2}$. We first try to find the corresponding u^{*}.

$$
\begin{aligned}
u^{*} & =\operatorname{argmin}_{\|u\|_{2} \leq \epsilon} \frac{1}{2}\|u\|_{2}^{2}-\langle u, v\rangle+\frac{1}{2}\|v\|_{2}^{2} \\
& =\operatorname{argmin}_{\|u\|_{2} \leq \epsilon} \frac{1}{2}\|u-v\|_{2}^{2}
\end{aligned}
$$

which is a projection problem i.e. project v into a convex set $\left\{u:\|u\|_{2} \leq \epsilon\right\}$. Therefore, if $\|v\|_{2} \leq \epsilon, u^{*}=v$. Otherwise, $u^{*}=\epsilon \frac{v}{\|v\|}$.

$$
J^{*}(v)= \begin{cases}\frac{1}{2}\|v\|_{2}^{2}, & \|v\|_{2} \leq \epsilon \\ \epsilon\|v\|_{2}^{2}-\frac{1}{2} \epsilon^{2}, & \text { otherwise }\end{cases}
$$

Exercise 3 (10 Points).
Definition (Slater's condition). Let $J: \mathbb{R}^{n} \rightarrow \mathbb{R}, G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be continuously differentiable and convex, and $H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{l}$ be affine linear i.e. $A u+b=0$. Let $U:=\left\{u \in \mathbb{R}^{n}: g_{i}(u) \leq 0, h_{j}(u)=0,1 \leq i \leq m, 1 \leq j \leq l\right\}$ denote the feasible set. The condition

$$
\exists u \in U \text { s.t. } g_{i}(u)<0, h_{j}(u)=0, \forall 1 \leq i \leq m, 1 \leq j \leq l
$$

is called Slater's condition
Definition (Polar cone). For a set C, the polar cone of C is defined as

$$
C^{o}=\{y \in \mathbb{E}:\langle y, d\rangle, \forall d \in C\} .
$$

Definition (Tangent cone). Let $U \subset \mathbb{E}$ be convex and $u \in U$. Then the tangent cone $T_{U}(u)$ is defined as

$$
T_{U}(u)=\left\{d \in \mathbb{E}: \exists u_{i} \in U \text { with } u_{i} \rightarrow u \text { and } \exists t_{i} \rightarrow 0^{+} \text {, s.t. } \lim _{i \rightarrow+\infty} \frac{u_{i}-u}{t_{i}}=d\right\}
$$

Now consider following constrainted optimization problem:

$$
\begin{array}{ll}
\min _{u} & J(u) \\
\text { s.t. } & g_{i}(u) \leq 0, \\
& \quad i=1, \ldots, m \\
h_{j}(u)=A_{j} u+b_{j}=0, & j=1, \ldots, l
\end{array}
$$

where J and g_{i} are continuously differentiable and convex functions and h_{j} are affine linear. Let U be the feasible set defined as before and $U_{1}:=\left\{u \in \mathbb{R}^{n}: G(u) \leq 0\right\}$ and $U_{2}:=\left\{u \in \mathbb{R}^{n}: H(u)=0\right\}$. Assume Slater's condition holds in U.

1. Using following theorem:

Theorem 1. Let f_{1}, \ldots, f_{n} are proper convex functions on \mathbb{R}^{n}, and let $f=$ $f_{1}+\cdots+f_{m}$. If the convex sets $\operatorname{ri}\left(\operatorname{dom} f_{i}\right), i=1, \ldots, m$ have a point in common, then

$$
\partial f(u)=\partial f_{1}(u)+\cdots+\partial f_{n}(u), \forall u
$$

prove that $N_{U}(u)=N_{U_{1}}(u)+N_{U_{2}}(u)$ where $N_{U}(u)$ is the normal cone of U at u.
2. Prove that $N_{U_{2}}(u)=\left\{\sum_{j=1}^{l} \mu_{j} \nabla h_{j}(u): \mu \in \mathbb{R}^{l}\right\}$.
3. Deduce that $T_{U_{1}}(u)=\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq 0\right\}$, where $\mathcal{A}(u)=\left\{i: g_{i}(u)=\right.$ $0, i=1, \ldots, m\}$ is called active set.
Hint: Firstly, show that $\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq 0\right\} \subset \operatorname{cl}\left(\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d<\right.\right.$ $0\}) \subset T_{U_{1}}(u)$. For the first " \subset " relation, consider the linear combination of a boundary point and an inner point. Then show $T_{U_{1}}(u) \subset\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq\right.$ $0\}$.
4. Show that $N_{U_{1}}(u)=\left\{\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(u): \lambda_{i} \geq 0, \lambda_{i} g_{i}(u)=0, i=1, \ldots, m\right\}$. You can use following two theorems:

Theorem 2. If a set $C \subset \mathbb{E}$ is closed and convex, then the bipolar cone is itself i.e. $C^{o o}=C$.

Theorem 3. Let $C \subset \mathbb{E}$ be a nonempty, convex set and let $u \in C$. Then the normal cone of C at u is the polar cone of the tangent cone of C at u. That is

$$
N_{c}(u)=\left(T_{c}(u)\right)^{o} .
$$

5. Show that $u^{*} \in U$ satisfies that $-\nabla J\left(u^{*}\right) \in N_{U}\left(u^{*}\right)$ if and only if u^{*} is a minimizer.

Solution. 1. Firstly, let's define two indicator functions $f_{1}=\delta_{U_{1}}(u)$ and $f_{2}=$ $\delta_{U_{2}}(u)$. It's clear that U_{1} and U_{2} are closed convex subset. As we know that the subdifferential of indicator function is the corresponding normal cone, we can get $\partial f_{1}(u)=N_{U_{1}}(u)$ and $\partial f_{2}(u)=N_{U_{2}}(u)$.
Since the slater condition is satisfied in U, therefore, we can find a common point in $\operatorname{ri}\left(\operatorname{dom}\left(f_{i}\right)\right), i=1,2$. By applying the theorem, we finally get $N_{U}(u)=$ $N_{U_{1}}(u)+N_{U_{2}}(u)$.
2. In fact, if we write the set into a matrix format, we can get $\left\{\sum_{j=1}^{l} \mu_{j} \nabla h_{j}(u)\right.$: $\left.\mu \in \mathbb{R}^{l}\right\}=\operatorname{ran}\left(\nabla H(u)=\operatorname{ran}\left(A^{T}\right)\right.$. Recall the definition of normal cone:

$$
N_{U_{2}}(u)=\left\{d \in \mathbb{E}:\langle d, v-u\rangle \leq 0, \forall v \in U_{2}\right\} .
$$

First, we show that $\operatorname{ran}\left(A^{T}\right) \subset\left\{d \in \mathbb{E}:\langle d, v-u\rangle \leq 0, \forall v \in U_{2}\right\}$. Pick $d=A^{\top} x$ for a certain $x,\langle d, v-u\rangle=\left\langle A^{\top} x, v-u\right\rangle=\langle x, A(v-u)\rangle=0$
Conversly, let's pick a d such that $\langle d, v-u\rangle \leq 0$. Since $(v-u) \in \operatorname{ker}(A)$ i.e. $A(v-u)=0$, we have $\langle d, A(v-u)\rangle=0, \forall v \in U_{2}$. This implies that d must be in the orthogonal plane of $\operatorname{ker}(A)$. So $d \in \operatorname{ker}(A)^{\perp}$ which is as same as $d \in \operatorname{ran}\left(A^{T}\right)$.
3. We first show that $\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d<0\right\} \subset T_{U_{1}}(u)$. Let d be such that $\nabla G_{\mathcal{A}}(u) d<0$. Then for all sufficiently small $t>0$, using Taylor's expansion we have

$$
G_{\mathcal{A}}(u+t d)=\underbrace{G_{\mathcal{A}}(u)}_{=0}+t \nabla G_{\mathcal{A}}(u) d+o(t)<0 .
$$

We can always construct suffient small t to satisfy the definition of tangent cone. Since $T_{U_{2}}$ is closed by definition, we get

$$
\operatorname{cl}\left(\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d<0\right\}\right) \subset T_{U_{1}}(u)
$$

According to the slater's condition, let's denote that $G(\bar{u})<0$ for a certain $\bar{u} \in U_{1}$. Consider a vector d with $\nabla G_{\mathcal{A}}(u) d \leq 0$. Using the property of gradient of convex function, we get for $\bar{d}:=\bar{u}-u$

$$
\begin{aligned}
& \nabla G_{\mathcal{A}}(u) \bar{d} \leq \underbrace{G_{\mathcal{A}}(\bar{u})}_{<0}-\underbrace{G_{\mathcal{A}}(u)}_{=0} \\
& \nabla G_{\mathcal{A}}(u) \bar{d}<0
\end{aligned}
$$

To show the left subset, we construct a linear combination of \bar{d} and d with $0<\lambda \leq 1$:

$$
\nabla G_{\mathcal{A}}(u)(\lambda \bar{d}+(1-\lambda) d)<0
$$

which intuitionly means d is a boundary point. Therefore, $d \in \operatorname{cl}(\{d \in \mathbb{E}$: $\left.\left.\nabla G_{\mathcal{A}}(u) d<0\right\}\right)$.
Now consider the other direction. Pick a $d \in T_{U_{1}}(u)$. Therefore, we have a sequence $u_{i} \rightarrow u$ and $t_{i} \rightarrow 0^{+}$such that

$$
\lim _{i \rightarrow+\infty} \frac{u_{i}-u}{t_{i}}=d
$$

Rewrite the limitation, we have $u_{i}=u+t_{i} d$. Further, using the convexity of $G_{\mathcal{A}}(u)$:

$$
\begin{aligned}
0 & \geq G_{\mathcal{A}}\left(u+t_{i} d\right) \\
& \geq G_{\mathcal{A}}(u)+t_{i} \nabla G_{\mathcal{A}}(u) d \\
& =t_{i} \nabla G_{\mathcal{A}}(u) d .
\end{aligned}
$$

which shows $T_{U_{1}} \subset\left\{d \in \mathbb{E}: \nabla G_{\mathcal{A}}(u) d \leq 0\right\}$.
4. Denote $\tilde{N}_{U_{1}}(u):=\left\{\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(u): \lambda_{i} \geq 0, \lambda_{i} g_{i}(u)=0, i=1, \ldots, m\right\}$. Rewrite it into following way:

$$
\begin{aligned}
\tilde{N}_{U_{1}}(u) & =\left\{\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}(u): \lambda_{i} \geq 0, \forall i=1, \ldots, m, \lambda_{i}=0, \forall i \notin \mathcal{A}(u)\right\} \\
& =\left\{\xi \in \mathbb{E}: \xi=\left(\nabla G_{\mathcal{A}}(u)\right)^{T} \kappa, \kappa \geq 0\right\}
\end{aligned}
$$

This set is clearly closed and $\left(\tilde{N}_{U_{1}}(u)\right)^{o}=T_{U_{1}}(u)$. By applying the two theorems, we have

$$
N_{U_{1}}(u)=\left(T_{U_{1}}(u)\right)^{o}=\left(\tilde{N}_{U_{1}}(u)\right)^{o o}=\tilde{N}_{U_{1}}(u)
$$

5. Using previous results, we have following equation for a fixed $\lambda_{i}^{*}, i=1, \ldots, m$ and $\mu_{j}^{*}, j=1, \ldots, l$:

$$
0=\nabla J\left(u^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(u^{*}\right)+\sum_{j=1}^{l} \mu_{j}^{*} \nabla h_{j}\left(u^{*}\right)
$$

Construct a new function $\mathcal{L}(u, \lambda, \mu):=J(u)+\sum_{i=1}^{m} \lambda_{i} g_{i}(u)+\sum_{j=1}^{l} \mu_{j} h_{j}(u)$. Above equation can be viewed as the first-order optimality condition. Therfore, for any $u \in U$, we can get:

$$
\begin{aligned}
J\left(u^{*}\right) & =\mathcal{L}\left(u^{*}, \lambda^{*}, \mu^{*}\right) \\
& \leq \mathcal{L}\left(u, \lambda^{*}, \mu^{*}\right) \\
& =J(u)+\underbrace{\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}(u)}_{\leq 0}+\underbrace{\sum_{j=1}^{l} \mu_{j}^{*} h_{j}(u)}_{=0} \\
& \leq J(u)
\end{aligned}
$$

This proof holds for both directions.

