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Convex cone (10+10 Points)
Exercise 1 (4 points). Assume J : E→ R, prove following facts of convex conjugate:

• J̃(·) = αJ(·)⇒ J̃∗(·) = αJ∗(·/α), α > 0.

• J̃(·) = J(· − z)⇒ J̃∗(·) = J∗(·) + 〈·, z〉.

Solution. • Using the definition of convex conjugate:

J̃(·) = sup
u
〈u, ·〉 − J̃(u)

= sup
u
〈u, ·〉 − αJ(u)

= α sup
u
〈u, ·/α〉 − J(u)︸ ︷︷ ︸

J∗(·/α)

= αJ∗(·/α)

• J̃(·) = supu〈u, ·〉 − J(u− z). Define v = u− z and by substitution we have:

J̃(·) = sup
v
〈v + z, ·〉+ J(v)

= sup
v
〈v, ·〉+ J(v) + 〈z, ·〉

= J∗(·) + 〈·, z〉

Exercise 2 (6 points). Assume J : Rn → R, compute the convex conjugate of
following functions:

• J(u) = 1
q
||u||qq =

∑n
i=1

1
q
|ui|q, q ∈ [1,+∞].

• J(u) =
∑n

i=1 uilogui + δ4n−1(u).

• J(u) =

{
1
2
‖u‖22 , ‖u‖2 ≤ ε

+∞, otherwise
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Solution. • J∗(v) = supu〈u, v〉−J(u). Since it is separable, we apply first-order
optimality condition elementwisely:

sup
ui

〈ui, vi〉 −
1

q
(|ui|)q ⇒ 0 = vi − |ui|q−1sign(ui)⇒ ui = |vi|1/(q−1)sign(vi)

Substitute ui back to the first equation, we have

J∗(v)i = |vi|q/(q−1) −
1

q
|vi|q/(q−1)

= (1− 1

q
)|vi|q/(q−1)

= (1− 1

q
)|vi|1/(1−

1
q
)

Substituting 1
p
= 1− 1

q
, we get J∗(v) = 1

p
||v||pp.

• Consider the convex conjugate elementwisely: J∗(v) = supu
∑n

i uivi−uilogui−
δ4n−1(u). Let’s consider the following minimization problem given vi:

min
u

n∑
i

uilogui − uivi

s.t.1u = 1

where 1 = [1, . . . , 1] ∈ Rn. It is obvious that this two problems share the same
optimal variable u∗ and the domain of log implies ui > 0. Since the feasible
set is compact and original energy function is continuous, the KKT condition
holds on u∗. Therefore, we have certain λ ∈ R such that

logu∗i + 1− vi + λ = 0, ∀i = 1, . . . , n

which give u∗i = exp{−λ+ vi − 1}. Additionally,
∑n

i=1 u
∗
i = 1. We can get

0 = log(
n∑
i=1

exp{−λ+vi−1}) = log(exp{−λ−1}
n∑
i=1

evi) = (−λ−1)+log(
n∑
i=1

evi)

Now, substitute u∗ back into the convex conjugate and we can get

J(v)∗ =
n∑
i

exp{−λ+ vi − 1}vi − exp{−λ+ vi − 1}(−λ+ vi − 1)

=
n∑
i

−exp{−λ+ vi − 1}(−λ− 1)

= −(−λ− 1) = log(
n∑
i=1

evi)
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• Rewrite the convex conjugate as J∗(v) = sup‖u‖2≤ε〈u, v〉−
1
2
‖u‖22. We first try

to find the corresponding u∗.

u∗ = argmin‖u‖2≤ε
1

2
‖u‖22 − 〈u, v〉+

1

2
‖v‖22

= argmin‖u‖2≤ε
1

2
‖u− v‖22

which is a projection problem i.e. project v into a convex set {u : ‖u‖2 ≤ ε}.
Therefore, if ‖v‖2 ≤ ε, u∗ = v. Otherwise, u∗ = ε v

‖v‖ .

J∗(v) =

{
1
2
‖v‖22 , ‖v‖2 ≤ ε

ε ‖v‖22 −
1
2
ε2, otherwise

Exercise 3 (10 Points).

Definition (Slater’s condition). Let J : Rn → R, G : Rn → Rm be continuously
differentiable and convex, and H : Rn → Rl be affine linear i.e. Au + b = 0. Let
U := {u ∈ Rn : gi(u) ≤ 0, hj(u) = 0, 1 ≤ i ≤ m, 1 ≤ j ≤ l} denote the feasible set.
The condition

∃u ∈ U s.t. gi(u) < 0, hj(u) = 0,∀ 1 ≤ i ≤ m, 1 ≤ j ≤ l

is called Slater’s condition

Definition (Polar cone). For a set C, the polar cone of C is defined as

Co = {y ∈ E : 〈y, d〉, ∀d ∈ C}.

Definition (Tangent cone). Let U ⊂ E be convex and u ∈ U . Then the tangent
cone TU(u) is defined as

TU(u) = {d ∈ E : ∃ui ∈ U with ui → u and ∃ti → 0+, s.t. lim
i→+∞

ui − u
ti

= d}

Now consider following constrainted optimization problem:

min
u

J(u)

s.t. gi(u) ≤ 0, i = 1, . . . ,m

hj(u) = Aju+ bj = 0, j = 1, . . . , l

where J and gi are continuously differentiable and convex functions and hj are affine
linear. Let U be the feasible set defined as before and U1 := {u ∈ Rn : G(u) ≤ 0}
and U2 := {u ∈ Rn : H(u) = 0}. Assume Slater’s condition holds in U .

1. Using following theorem:

Theorem 1. Let f1, . . . , fn are proper convex functions on Rn, and let f =
f1 + · · · + fm. If the convex sets ri(domfi), i = 1, . . . ,m have a point in
common, then

∂f(u) = ∂f1(u) + · · ·+ ∂fn(u), ∀u.
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prove that NU(u) = NU1(u) +NU2(u) where NU(u) is the normal cone of U at
u.

2. Prove that NU2(u) = {
∑l

j=1 µj∇hj(u) : µ ∈ Rl}.

3. Deduce that TU1(u) = {d ∈ E : ∇GA(u)d ≤ 0}, where A(u) = {i : gi(u) =
0, i = 1, . . . ,m} is called active set.
Hint: Firstly, show that {d ∈ E : ∇GA(u)d ≤ 0} ⊂ cl({d ∈ E : ∇GA(u)d <
0}) ⊂ TU1(u). For the first "⊂" relation, consider the linear combination of a
boundary point and an inner point. Then show TU1(u) ⊂ {d ∈ E : ∇GA(u)d ≤
0}.

4. Show that NU1(u) = {
∑m

i=1 λi∇gi(u) : λi ≥ 0, λigi(u) = 0, i = 1, . . . ,m}. You
can use following two theorems:

Theorem 2. If a set C ⊂ E is closed and convex, then the bipolar cone is
itself i.e. Coo = C.

Theorem 3. Let C ⊂ E be a nonempty, convex set and let u ∈ C. Then the
normal cone of C at u is the polar cone of the tangent cone of C at u. That is

Nc(u) = (Tc(u))o.

5. Show that u∗ ∈ U satisfies that −∇J(u∗) ∈ NU(u∗) if and only if u∗ is a
minimizer.

Solution. 1. Firstly, let’s define two indicator functions f1 = δU1(u) and f2 =
δU2(u). It’s clear that U1 and U2 are closed convex subset. As we know that
the subdifferential of indicator function is the corresponding normal cone, we
can get ∂f1(u) = NU1(u) and ∂f2(u) = NU2(u).
Since the slater condition is satisfied in U , therefore, we can find a common
point in ri(dom(fi)), i = 1, 2. By applying the theorem, we finally get NU(u) =
NU1(u) +NU2(u).

2. In fact, if we write the set into a matrix format, we can get {
∑l

j=1 µj∇hj(u) :

µ ∈ Rl} = ran(∇H(u) = ran(AT ). Recall the definition of normal cone:

NU2(u) = {d ∈ E : 〈d, v − u〉 ≤ 0,∀v ∈ U2}.

First, we show that ran(AT ) ⊂ {d ∈ E : 〈d, v−u〉 ≤ 0,∀v ∈ U2}. Pick d = A>x
for a certain x, 〈d, v − u〉 = 〈A>x, v − u〉 = 〈x,A(v − u)〉 = 0
Conversly, let’s pick a d such that 〈d, v − u〉 ≤ 0. Since (v − u) ∈ ker(A) i.e.
A(v − u) = 0, we have 〈d,A(v − u)〉 = 0,∀v ∈ U2. This implies that d must
be in the orthogonal plane of ker(A). So d ∈ ker(A)⊥ which is as same as
d ∈ ran(AT ).
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3. We first show that {d ∈ E : ∇GA(u)d < 0} ⊂ TU1(u). Let d be such that
∇GA(u)d < 0. Then for all sufficiently small t > 0, using Taylor’s expansion
we have

GA(u+ td) = GA(u)︸ ︷︷ ︸
=0

+t∇GA(u)d+ o(t) < 0.

We can always construct suffient small t to satisfy the definition of tangent
cone. Since TU2 is closed by definition, we get

cl({d ∈ E : ∇GA(u)d < 0}) ⊂ TU1(u).

According to the slater’s condition, let’s denote that G(ū) < 0 for a certain
ū ∈ U1. Consider a vector d with ∇GA(u)d ≤ 0. Using the property of
gradient of convex function, we get for d̄ := ū− u

∇GA(u)d̄ ≤ GA(ū)︸ ︷︷ ︸
<0

−GA(u)︸ ︷︷ ︸
=0

∇GA(u)d̄ < 0

To show the left subset, we construct a linear combination of d̄ and d with
0 < λ ≤ 1:

∇GA(u)(λd̄+ (1− λ)d) < 0,

which intuitionly means d is a boundary point. Therefore, d ∈ cl({d ∈ E :
∇GA(u)d < 0}).
Now consider the other direction. Pick a d ∈ TU1(u). Therefore, we have a
sequence ui → u and ti → 0+ such that

lim
i→+∞

ui − u
ti

= d.

Rewrite the limitation, we have ui = u + tid. Further, using the convexity of
GA(u):

0 ≥ GA(u+ tid)

≥ GA(u) + ti∇GA(u)d

= ti∇GA(u)d.

which shows TU1 ⊂ {d ∈ E : ∇GA(u)d ≤ 0}.

4. Denote ÑU1(u) := {
∑m

i=1 λi∇gi(u) : λi ≥ 0, λigi(u) = 0, i = 1, . . . ,m}.
Rewrite it into following way:

ÑU1(u) = {
m∑
i=1

λi∇gi(u) : λi ≥ 0,∀i = 1, . . . ,m, λi = 0,∀i /∈ A(u)}

= {ξ ∈ E : ξ = (∇GA(u))Tκ, κ ≥ 0}.

This set is clearly closed and (ÑU1(u))o = TU1(u). By applying the two theo-
rems, we have

NU1(u) = (TU1(u))o = (ÑU1(u))oo = ÑU1(u).
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5. Using previous results, we have following equation for a fixed λ∗i , i = 1, . . . ,m
and µ∗j , j = 1, . . . , l:

0 = ∇J(u∗) +
m∑
i=1

λ∗i∇gi(u∗) +
l∑

j=1

µ∗j∇hj(u∗)

Construct a new function L(u, λ, µ) := J(u) +
∑m

i=1 λigi(u) +
∑l

j=1 µjhj(u).
Above equation can be viewed as the first-order optimality condition. Ther-
fore, for any u ∈ U , we can get:

J(u∗) = L(u∗, λ∗, µ∗)

≤ L(u, λ∗, µ∗)

= J(u) +
m∑
i=1

λ∗i gi(u)︸ ︷︷ ︸
≤0

+
l∑

j=1

µ∗jhj(u)︸ ︷︷ ︸
=0

≤ J(u)

This proof holds for both directions.

6


