Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu

Exercises: Emanuel Laude, Zhenzhang Ye
Summer Semester 2018

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 4

Room: 02.09.023 Wednesday, 16.05.2018, 12:15-14:00

Submission deadline: Monday, 14.05.2018, 16:15, Room 02.09.023

Convex cone

(10+10 Points)

Exercise 1 (4 points). Assume $J: \mathbb{E} \to \mathbb{R}$, prove following facts of convex conjugate:

•
$$\tilde{J}(\cdot) = \alpha J(\cdot) \Rightarrow \tilde{J}^*(\cdot) = \alpha J^*(\cdot/\alpha), \ \alpha > 0.$$

•
$$\tilde{J}(\cdot) = J(\cdot - z) \Rightarrow \tilde{J}^*(\cdot) = J^*(\cdot) + \langle \cdot, z \rangle$$
.

Solution. • Using the definition of convex conjugate:

$$\tilde{J}(\cdot) = \sup_{u} \langle u, \cdot \rangle - \tilde{J}(u)$$

$$= \sup_{u} \langle u, \cdot \rangle - \alpha J(u)$$

$$= \alpha \sup_{u} \langle u, \cdot /\alpha \rangle - J(u)$$

$$= \alpha J^*(\cdot /\alpha)$$

• $\tilde{J}(\cdot) = \sup_{u} \langle u, \cdot \rangle - J(u-z)$. Define v = u - z and by substitution we have:

$$\begin{split} \tilde{J}(\cdot) &= \sup_{v} \langle v + z, \cdot \rangle + J(v) \\ &= \sup_{v} \langle v, \cdot \rangle + J(v) + \langle z, \cdot \rangle \\ &= J^*(\cdot) + \langle \cdot, z \rangle \end{split}$$

Exercise 2 (6 points). Assume $J: \mathbb{R}^n \to \mathbb{R}$, compute the convex conjugate of following functions:

•
$$J(u) = \frac{1}{q}||u||_q^q = \sum_{i=1}^n \frac{1}{q}|u_i|^q, q \in [1, +\infty].$$

•
$$J(u) = \sum_{i=1}^{n} u_i \log u_i + \delta_{\triangle^{n-1}}(u)$$
.

•
$$J(u) = \begin{cases} \frac{1}{2} \|u\|_2^2, & \|u\|_2 \le \epsilon \\ +\infty, & \text{otherwise} \end{cases}$$

Solution. • $J^*(v) = \sup_u \langle u, v \rangle - J(u)$. Since it is separable, we apply first-order optimality condition elementwisely:

$$\sup_{u_i} \langle u_i, v_i \rangle - \frac{1}{q} (|u_i|)^q \Rightarrow 0 = v_i - |u_i|^{q-1} \operatorname{sign}(u_i) \Rightarrow u_i = |v_i|^{1/(q-1)} \operatorname{sign}(v_i)$$

Substitute u_i back to the first equation, we have

$$J^*(v)_i = |v_i|^{q/(q-1)} - \frac{1}{q} |v_i|^{q/(q-1)}$$
$$= (1 - \frac{1}{q}) |v_i|^{q/(q-1)}$$
$$= (1 - \frac{1}{q}) |v_i|^{1/(1 - \frac{1}{q})}$$

Substituting $\frac{1}{p} = 1 - \frac{1}{q}$, we get $J^*(v) = \frac{1}{p}||v||_p^p$.

• Consider the convex conjugate elementwisely: $J^*(v) = \sup_u \sum_i^n u_i v_i - u_i \log u_i - \delta_{\triangle^{n-1}}(u)$. Let's consider the following minimization problem given v_i :

$$\min_{u} \sum_{i}^{n} u_{i} \log u_{i} - u_{i} v_{i}$$
s.t. $\mathbb{1}u = 1$

where $\mathbb{1} = [1, ..., 1] \in \mathbb{R}^n$. It is obvious that this two problems share the same optimal variable u^* and the domain of log implies $u_i > 0$. Since the feasible set is compact and original energy function is continuous, the KKT condition holds on u^* . Therefore, we have certain $\lambda \in \mathbb{R}$ such that

$$\log u_i^* + 1 - v_i + \lambda = 0, \ \forall i = 1, \dots, n$$

which give $u_i^* = \exp\{-\lambda + v_i - 1\}$. Additionally, $\sum_{i=1}^n u_i^* = 1$. We can get

$$0 = \log(\sum_{i=1}^{n} \exp\{-\lambda + v_i - 1\}) = \log(\exp\{-\lambda - 1\}) = (-\lambda - 1) + \log(\sum_{i=1}^{n} e^{v_i}) = (-\lambda - 1) + \log(\sum_{i=1}^{n} e^{v_i})$$

Now, substitute u^* back into the convex conjugate and we can get

$$J(v)^* = \sum_{i=1}^{n} \exp\{-\lambda + v_i - 1\}v_i - \exp\{-\lambda + v_i - 1\}(-\lambda + v_i - 1)$$
$$= \sum_{i=1}^{n} -\exp\{-\lambda + v_i - 1\}(-\lambda - 1)$$
$$= -(-\lambda - 1) = \log(\sum_{i=1}^{n} e^{v_i})$$

• Rewrite the convex conjugate as $J^*(v) = \sup_{\|u\|_2 \le \epsilon} \langle u, v \rangle - \frac{1}{2} \|u\|_2^2$. We first try to find the corresponding u^* .

$$u^* = \operatorname{argmin}_{\|u\|_2 \le \epsilon} \frac{1}{2} \|u\|_2^2 - \langle u, v \rangle + \frac{1}{2} \|v\|_2^2$$
$$= \operatorname{argmin}_{\|u\|_2 \le \epsilon} \frac{1}{2} \|u - v\|_2^2$$

which is a projection problem i.e. project v into a convex set $\{u : ||u||_2 \le \epsilon\}$. Therefore, if $||v||_2 \le \epsilon$, $u^* = v$. Otherwise, $u^* = \epsilon \frac{v}{||v||}$.

$$J^{*}(v) = \begin{cases} \frac{1}{2} \|v\|_{2}^{2}, & \|v\|_{2} \leq \epsilon \\ \epsilon \|v\|_{2}^{2} - \frac{1}{2}\epsilon^{2}, & \text{otherwise} \end{cases}$$

Exercise 3 (10 Points).

Definition (Slater's condition). Let $J: \mathbb{R}^n \to \mathbb{R}$, $G: \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable and convex, and $H: \mathbb{R}^n \to \mathbb{R}^l$ be affine linear i.e. Au + b = 0. Let $U := \{u \in \mathbb{R}^n : g_i(u) \leq 0, h_j(u) = 0, 1 \leq i \leq m, 1 \leq j \leq l\}$ denote the feasible set. The condition

$$\exists u \in U \text{ s.t. } g_i(u) < 0, h_j(u) = 0, \forall 1 \le i \le m, 1 \le j \le l$$

is called Slater's condition

Definition (Polar cone). For a set C, the polar cone of C is defined as

$$C^o = \{ y \in \mathbb{E} : \langle y, d \rangle, \ \forall d \in C \}.$$

Definition (Tangent cone). Let $U \subset \mathbb{E}$ be convex and $u \in U$. Then the tangent cone $T_U(u)$ is defined as

$$T_U(u) = \{d \in \mathbb{E} : \exists u_i \in U \text{ with } u_i \to u \text{ and } \exists t_i \to 0^+, \text{ s.t. } \lim_{i \to +\infty} \frac{u_i - u}{t_i} = d\}$$

Now consider following constrainted optimization problem:

$$\min_{u} J(u)
s.t. g_{i}(u) \leq 0, \qquad i = 1, ..., m
h_{j}(u) = A_{j}u + b_{j} = 0, \quad j = 1, ..., l$$

where J and g_i are continuously differentiable and convex functions and h_j are affine linear. Let U be the feasible set defined as before and $U_1 := \{u \in \mathbb{R}^n : G(u) \leq 0\}$ and $U_2 := \{u \in \mathbb{R}^n : H(u) = 0\}$. Assume Slater's condition holds in U.

1. Using following theorem:

Theorem 1. Let f_1, \ldots, f_n are proper convex functions on \mathbb{R}^n , and let $f = f_1 + \cdots + f_m$. If the convex sets ri(dom f_i), $i = 1, \ldots, m$ have a point in common, then

$$\partial f(u) = \partial f_1(u) + \dots + \partial f_n(u), \ \forall u.$$

prove that $N_U(u) = N_{U_1}(u) + N_{U_2}(u)$ where $N_U(u)$ is the normal cone of U at u.

- 2. Prove that $N_{U_2}(u) = \{ \sum_{j=1}^{l} \mu_j \nabla h_j(u) : \mu \in \mathbb{R}^l \}.$
- 3. Deduce that $T_{U_1}(u) = \{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d \leq 0\}$, where $\mathcal{A}(u) = \{i : g_i(u) = 0, i = 1, ..., m\}$ is called active set.

Hint: Firstly, show that $\{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d \leq 0\} \subset \operatorname{cl}(\{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d < 0\}) \subset T_{U_1}(u)$. For the first " \subset " relation, consider the linear combination of a boundary point and an inner point. Then show $T_{U_1}(u) \subset \{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d \leq 0\}$.

4. Show that $N_{U_1}(u) = \{\sum_{i=1}^m \lambda_i \nabla g_i(u) : \lambda_i \geq 0, \lambda_i g_i(u) = 0, i = 1, \dots, m\}$. You can use following two theorems:

Theorem 2. If a set $C \subset \mathbb{E}$ is closed and convex, then the bipolar cone is itself i.e. $C^{oo} = C$.

Theorem 3. Let $C \subset \mathbb{E}$ be a nonempty, convex set and let $u \in C$. Then the normal cone of C at u is the polar cone of the tangent cone of C at u. That is

$$N_c(u) = (T_c(u))^o.$$

- 5. Show that $u^* \in U$ satisfies that $-\nabla J(u^*) \in N_U(u^*)$ if and only if u^* is a minimizer.
- **Solution.** 1. Firstly, let's define two indicator functions $f_1 = \delta_{U_1}(u)$ and $f_2 = \delta_{U_2}(u)$. It's clear that U_1 and U_2 are closed convex subset. As we know that the subdifferential of indicator function is the corresponding normal cone, we can get $\partial f_1(u) = N_{U_1}(u)$ and $\partial f_2(u) = N_{U_2}(u)$. Since the slater condition is satisfied in U, therefore, we can find a common
 - point in ri(dom (f_i)), i = 1, 2. By applying the theorem, we finally get $N_U(u) = N_{U_1}(u) + N_{U_2}(u)$.
 - 2. In fact, if we write the set into a matrix format, we can get $\{\sum_{j=1}^{l} \mu_j \nabla h_j(u) : \mu \in \mathbb{R}^l\} = \operatorname{ran}(\nabla H(u) = \operatorname{ran}(A^T)$. Recall the definition of normal cone:

$$N_{U_2}(u) = \{ d \in \mathbb{E} : \langle d, v - u \rangle \le 0, \forall v \in U_2 \}.$$

First, we show that $\operatorname{ran}(A^T) \subset \{d \in \mathbb{E} : \langle d, v - u \rangle \leq 0, \forall v \in U_2 \}$. Pick $d = A^T x$ for a certain x, $\langle d, v - u \rangle = \langle A^T x, v - u \rangle = \langle x, A(v - u) \rangle = 0$ Conversly, let's pick a d such that $\langle d, v - u \rangle \leq 0$. Since $(v - u) \in \ker(A)$ i.e. A(v - u) = 0, we have $\langle d, A(v - u) \rangle = 0, \forall v \in U_2$. This implies that d must be in the orthogonal plane of $\ker(A)$. So $d \in \ker(A)^{\perp}$ which is as same as $d \in \operatorname{ran}(A^T)$.

3. We first show that $\{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d < 0\} \subset T_{U_1}(u)$. Let d be such that $\nabla G_{\mathcal{A}}(u)d < 0$. Then for all sufficiently small t > 0, using Taylor's expansion we have

$$G_{\mathcal{A}}(u+td) = \underbrace{G_{\mathcal{A}}(u)}_{=0} + t \nabla G_{\mathcal{A}}(u)d + o(t) < 0.$$

We can always construct sufficient small t to satisfy the definition of tangent cone. Since T_{U_2} is closed by definition, we get

$$\operatorname{cl}(\{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d < 0\}) \subset T_{U_1}(u).$$

According to the slater's condition, let's denote that $G(\bar{u}) < 0$ for a certain $\bar{u} \in U_1$. Consider a vector d with $\nabla G_{\mathcal{A}}(u)d \leq 0$. Using the property of gradient of convex function, we get for $\bar{d} := \bar{u} - u$

$$\nabla G_{\mathcal{A}}(u)\bar{d} \leq \underbrace{G_{\mathcal{A}}(\bar{u})}_{<0} - \underbrace{G_{\mathcal{A}}(u)}_{=0}$$
$$\nabla G_{\mathcal{A}}(u)\bar{d} < 0$$

To show the left subset, we construct a linear combination of \bar{d} and d with $0 < \lambda \le 1$:

$$\nabla G_{\mathcal{A}}(u)(\lambda \bar{d} + (1 - \lambda)d) < 0,$$

which intuitionly means d is a boundary point. Therefore, $d \in \operatorname{cl}(\{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d < 0\})$.

Now consider the other direction. Pick a $d \in T_{U_1}(u)$. Therefore, we have a sequence $u_i \to u$ and $t_i \to 0^+$ such that

$$\lim_{i \to +\infty} \frac{u_i - u}{t_i} = d.$$

Rewrite the limitation, we have $u_i = u + t_i d$. Further, using the convexity of $G_A(u)$:

$$0 \ge G_{\mathcal{A}}(u + t_i d)$$

$$\ge G_{\mathcal{A}}(u) + t_i \nabla G_{\mathcal{A}}(u) d$$

$$= t_i \nabla G_{\mathcal{A}}(u) d.$$

which shows $T_{U_1} \subset \{d \in \mathbb{E} : \nabla G_{\mathcal{A}}(u)d \leq 0\}.$

4. Denote $\tilde{N}_{U_1}(u) := \{\sum_{i=1}^m \lambda_i \nabla g_i(u) : \lambda_i \geq 0, \lambda_i g_i(u) = 0, i = 1, \dots, m\}$. Rewrite it into following way:

$$\tilde{N}_{U_1}(u) = \{ \sum_{i=1}^m \lambda_i \nabla g_i(u) : \lambda_i \ge 0, \forall i = 1, \dots, m, \lambda_i = 0, \forall i \notin \mathcal{A}(u) \}$$

$$= \{ \xi \in \mathbb{E} : \xi = (\nabla G_{\mathcal{A}}(u))^T \kappa, \kappa \ge 0 \}.$$

This set is clearly closed and $(\tilde{N}_{U_1}(u))^o = T_{U_1}(u)$. By applying the two theorems, we have

$$N_{U_1}(u) = (T_{U_1}(u))^o = (\tilde{N}_{U_1}(u))^{oo} = \tilde{N}_{U_1}(u).$$

5. Using previous results, we have following equation for a fixed $\lambda_i^*, i = 1, \ldots, m$ and $\mu_j^*, j = 1, \ldots, l$:

$$0 = \nabla J(u^*) + \sum_{i=1}^{m} \lambda_i^* \nabla g_i(u^*) + \sum_{j=1}^{l} \mu_j^* \nabla h_j(u^*)$$

Construct a new function $\mathcal{L}(u,\lambda,\mu) := J(u) + \sum_{i=1}^m \lambda_i g_i(u) + \sum_{j=1}^l \mu_j h_j(u)$. Above equation can be viewed as the first-order optimality condition. Therfore, for any $u \in U$, we can get:

$$J(u^*) = \mathcal{L}(u^*, \lambda^*, \mu^*)$$

$$\leq \mathcal{L}(u, \lambda^*, \mu^*)$$

$$= J(u) + \underbrace{\sum_{i=1}^{m} \lambda_i^* g_i(u)}_{\leq 0} + \underbrace{\sum_{j=1}^{l} \mu_j^* h_j(u)}_{=0}$$

$$\leq J(u)$$

This proof holds for both directions.