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Convex cone (10+10 Points)
Exercise 1 (4 points). Assume J : E — R, prove following facts of convex conjugate:
o J()=alJ(:) = J() = aJ*(-/a), a > 0.
e J()=J(—2)= J()=T()+ (- 2).

Solution. e Using the definition of convex conjugate:

o J(-) =sup,(u,-) — J(u — z). Define v = u — z and by substitution we have:

J(-) =sup(v+2,-) + J(v)

v

= sup(v, > + J(?}) + <Z’ >

=J()+(2)

Exercise 2 (6 points). Assume J : R" — R, compute the convex conjugate of
following functions:

o J(uw) = Hfullg = S, Husl, g € [1,+oc].

o J(u) =", ulogu; + dan-1(u).

2
. J(u) = { el ully < ¢

400, otherwise



Solution. e J*(v) = sup,(u,v)—J(u). Since it is separable, we apply first-order
optimality condition elementwisely:

1
sup(u;, v;) — —(Jui)? = 0 = v; — |u; |9 sign(u;) = u; = |v;|/@ Vsign(v;)
; q

Us

Substitute u; back to the first equation, we have
T )i = o]/ — Ly e/
q
1 _
=(1- _)|Ui‘q/(q 1)
q
=(1- 1)|UZ.|1/(1—§)
q

Substituting % =1- %7 we get J*(v) = %Hv”ﬁ.

e Consider the convex conjugate elementwisely: J*(v) = sup, > w;v;—u;logu;—

dan-1(u). Let’s consider the following minimization problem given v;:

n

where 1 = [1,...,1] € R™. It is obvious that this two problems share the same
optimal variable u* and the domain of log implies u; > 0. Since the feasible
set is compact and original energy function is continuous, the KKT condition
holds on u*. Therefore, we have certain A € R such that

logu; +1—v; +A=0, Vi=1,...,n
which give uf = exp{—X + v; — 1}. Additionally, Y " , uf = 1. We can get
0= log(z exp{—A+v;,—1}) = log(exp{—A—1} Z e’) = (—A—l)—i—log(z e’)
i=1 i=1 i=1

Now, substitute u* back into the convex conjugate and we can get

J)* =3 exp{-A+v; — 1}v; — exp{~A+v; = 1}(~=A+1v; — 1)

n

= —exp{-A+uv;— 1}(-A—-1)

i

= —(-A—1)= 1og(zew)



e Rewrite the convex conjugate as J*(v) = supy,_ <c(u, v) — 2 [ ul|2. We first try
to find the corresponding u*.

. . 1 2 Lo
u' = argminy,, < |ull; = (u,v) + 5 v]|5

: 1 2
= argminy|,<e 5 [lu —vll;

which is a projection problem i.e. project v into a convex set {u : |lul|, < €}.
Therefore, if ||v]|, < €, u* = v. Otherwise, u* = €Ty

2
) = { loll;. ol <

e|lvlly — i€%, otherwise

Exercise 3 (10 Points).

Definition (Slater’s condition). Let J : R* — R, G : R" — R™ be continuously
differentiable and convex, and H : R® — R! be affine linear i.e. Au +0b = 0. Let
U:={ueR":g(u) <0,hj(u) =0,1<i<m,1<j<I} denote the feasible set.
The condition

JueUst. gi(u) <0,hj(u) =0,V1<i<m,1<j<I
is called Slater’s condition
Definition (Polar cone). For a set C, the polar cone of C' is defined as
C’={yeE:(y,d), Vd e C}.
Definition (Tangent cone). Let U C E be convex and v € U. Then the tangent
cone Ty (u) is defined as

Ty(u) = {d € E : Ju; € U with u; — u and 3t; — 0%, s.t. lim iz u_ d}

Now consider following constrainted optimization problem:
min J(u)

s.t. gi(u) <0, i=1,....,m

hj(u):Aju—l—bj:O, ]:1,,l

where J and g; are continuously differentiable and convex functions and h; are affine
linear. Let U be the feasible set defined as before and U; := {u € R" : G(u) < 0}
and Uy := {u € R" : H(u) = 0}. Assume Slater’s condition holds in U.

1. Using following theorem:

Theorem 1. Let fi,..., f, are proper convex functions on R", and let f =
fi+ -+ fim. If the convex sets ri(domf;), i = 1,...,m have a point in
common, then

Of(u) =0f1(u) +---+ 0fn(u), Vu.

3



prove that Ny (u) = Ny, (u) + Ny, (u) where Ny (u) is the normal cone of U at
u.

2. Prove that Ny, (u) = {3, 11;Vh;(u) : p € R'}.

3. Deduce that Ty, (u) = {d € E : VG4(u)d < 0}, where A(u) = {i : gi(u) =
0,i=1,...,m} is called active set.
Hint: Firstly, show that {d € E : VG 4(u)d < 0} C cl({d € E : VG 4(u)d <
0}) C Ty, (u). For the first "C" relation, consider the linear combination of a
boundary point and an inner point. Then show Ty, (u) C {d € E: VG 4(u)d <

0}.

4. Show that Ny, (u) = {D 7, AiVgi(u) : \i > 0, Ngi(u) = 0,i=1,...,m}. You
can use following two theorems:

Theorem 2. If a set C' C E is closed and convex, then the bipolar cone is
itself i.e. C° = C.

Theorem 3. Let C' C E be a nonempty, convex set and let v € C'. Then the
normal cone of C' at u is the polar cone of the tangent cone of C' at u. That is

Ne(u) = (Te(u))’.

5. Show that u* € U satisfies that —V.J(u*) € Ny(u*) if and only if u* is a
minimizer.

Solution. 1. Firstly, let’s define two indicator functions f; = dy, (u) and fo =
du,(u). It’s clear that U; and U, are closed convex subset. As we know that
the subdifferential of indicator function is the corresponding normal cone, we
can get dfi(u) = Ny, (u) and 0fa(u) = Ny, (u).

Since the slater condition is satisfied in U, therefore, we can find a common
point in ri(dom( f;)), i = 1,2. By applying the theorem, we finally get Ny (u) =
NUI (u) + NUQ(U)'

2. In fact, if we write the set into a matrix format, we can get {22:1 (i Vhi(u)
p € R} = ran(VH (u) = ran(AT). Recall the definition of normal cone:

Nuy,(u) ={d € E: (d,v—u) <0,Vv € Us}.

First, we show that ran(A”) C {d € E: (d,v—u) < 0,Vv € Usy}. Pickd = ATz
for a certain z, (d,v —u) = (ATz,v —u) = (z,A(v —u)) =0

Conversly, let’s pick a d such that (d,v —u) < 0. Since (v — u) € ker(A) i.e.
A(v —u) = 0, we have (d, A(v — u)) = 0,Vv € U,. This implies that d must
be in the orthogonal plane of ker(A4). So d € ker(A)* which is as same as
d € ran(AT).



3. We first show that {d € E : VG 4(u)d < 0} C Ty, (u). Let d be such that
VG 4(u)d < 0. Then for all sufficiently small ¢ > 0, using Taylor’s expansion
we have

Ga(u+td) = G4(u) +tVG 4(u)d + o(t) < 0.

We can always construct suffient small ¢ to satisfy the definition of tangent
cone. Since Ty, is closed by definition, we get

cl{d e E: VG4(u)d < 0}) C Ty, (u).

According to the slater’s condition, let’s denote that G(u) < 0 for a certain
u € U;. Consider a vector d with VC_JA(u)d < 0. Using the property of
gradient of convex function, we get for d := u — u

VGA(U)CZ < GA(’I_L) — GA(U)
<0 =0

VGA(’LL)CZ <0

To show the left subset, we construct a linear combination of d and d with
O0< A< B
VG A(u)(AMd+ (1 — N)d) <0,

which intuitionly means d is a boundary point. Therefore, d € cl({d € E :
VG A(u)d < 0}).

Now consider the other direction. Pick a d € Ty, (u). Therefore, we have a
sequence u; — v and t; — 0 such that

U; — U

lim =d.

Rewrite the limitation, we have u; = u + t;d. Further, using the convexity of
Ga(u):
> GA(U) + t@VG_A(U)d
= tZVGA(u)d
which shows Ty, C {d € E: VG 4(u)d < 0}.
4. Denote Ny, (u) == {37, \MVg(u) = N > 0,Ngi(u) = 0,4 = 1,...,m}.
Rewrite it into following way:

Ny () =) AiVgi(u) : A > 0,¥i =1,...,m,\; = 0,¥i ¢ A(u)}
=1

= {5_6 E:&=(VGya(w) 'k, x>0}

This set is clearly closed and (Ny, (1)) = Ty, (u). By applying the two theo-
rems, we have

N, (u) = (Tv, () = (N, (1)) = Ny (u).
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. Using previous results, we have following equation for a fixed A\},i =1,...,m
and pi,j=1,...,0

m l
0=VJW)+> XNVgu)+ Y uVhu)
i=1 j=1

Construct a new function £(u, A, p) == J(u) + Y vy Nigi(u) + 23:1 pihi(u).
Above equation can be viewed as the first-order optimality condition. Ther-
fore, for any u € U, we can get:
J(u) = L(u™, A", ")
< L{u, A", 1)

m l
= J(w) + > Ngi(u)+ > pihy(u)
i=1 j=1

J/

~~ -~

<0 =0

< J(u)

This proof holds for both directions.



