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Porximal operator (8+4 Points)
Exercise 1 (4 Points). Assume function J : Rn → R is convex and subdifferentiable
on its domain. Show that u∗ minimizes J if and only if u∗ = proxJ(u∗).

Solution. If u∗ minimizes J , we have J(u) ≥ J(u∗) for any u ∈ domJ. Therefore,

J(u) +
1

2
‖u− u∗‖2

2 ≥ J(u∗) = J(u∗) +
1

2
||u∗ − u∗||22

for any u, which means u∗ = proxJ(u∗).
Conversely, as J is a convex function, a point u = proxJ(u∗) if and only if

0 ∈ ∂J(u) + (u− u∗)

Replace u with u∗, we can get the optimality condition. Since J is convex, we know
that u∗ is the minimizer.

Exercise 2 (4 Points). Prove following properties of proximal operator:

• If J(u) = αf(u) + b, with α > 0, then proxλJ(v) = proxαλf (v).

• If J(u) = f(Qu), whereQ is an orthogonal matrix, then proxλJ(v) = Q>proxλf (Qv)

Solution. •
proxλJ(v) = argminu J(u) +

1

2λ
||u− v||2

= argminu αf(u) + b+
1

2λ
||u− v||2

= argminu α(f(u) +
1

2λα
||u− v||2)

= argminu f(u) +
1

2λα
||u− v||2

= proxαλf (v)
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•
proxλJ(v) = argminu J(u) +

1

2λ
||u− v||2

= argminu f(Qu) +
1

2λ
||u− v||2

= argminu f(Qu) +
1

2λ
||Qu−Qv||2

t=Qu
= Q> argmint f(t) +

1

2λ
||t−Qv||2

= Q>proxλf (Qv)

Exercise 3 (4 Points). Show that the `1-norm proximity operator of v ∈ Rn is given
as

proxλ‖·‖1(v) = u ∈ Rn, ui :=


vi + λ if vi < −λ
0 if vi ∈ [−λ, λ]

vi − λ if vi > λ.

Solution. We begin reformulating the optimality condition

0 ∈ ∂
(

1

2λ
(ui − vi)2 + |ui|

)
of the optimal ui

0 =
1

λ
(ui − vi) + p, p ∈ ∂|ui| :=


−1 if ui < 0

[−1, 1] if ui = 0

1 if ui > 0

vi ∈ ui +


−λ if ui < 0

[−λ, λ] if ui = 0

λ if ui > 0.

Recall that we are looking for a ui that satisfies the condition above given a fixed
vi. We distinguish the following cases:

1. Assume vi ∈ [−λ, λ]. Choosing ui := 0 satisfies the condition above.

2. Assume vi > λ. Choosing ui := vi − λ again satisfies the condition.

3. Assume vi < −λ. Choosing ui := vi + λ is the right choice.
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Matrix Completion (Due: 11.06.2018) (12 Points)
Exercise 4 (12 Points). In this exercise, you need to solve a matrix completion
problem and use duality gap as stop criterion. The problem can be descirbed as
following: assume there exists one true matrix A ∈ Rm×n which is unknown. Only
a observation matrix F ∈ Rm×n is given. In this matrix F , some entries ij ∈ Ω
with a small noise is known. Now, we want to recover the original true matrix A as
accurate as possible.
If |Ω| < mn, this problem is undetermined. However, if we assume A has low rank,
it is possible to recover it by formulating following problem:

argminX∈Rm×n ‖X‖nuc +
α

2
‖PΩ(X − F )‖2

where PΩ(X) can be viewed as a projection operation on X. It extracts the corre-
sponding entry xij, ij ∈ Ω from X and turn them into a vector R|Ω|. Its transpose
P>Ω is putting the entry back to the original position of a matrix. You are asked to
do the following steps:

• Performe a proximal gradient to get the optimal solution X∗. In detail, apply
the gradient step to the latter quadratic term and proximal step on nuclear
norm.

• Compute the dual problem of original and use the optimality condition on the
saddle point problem to recover the dual variable.(You don’t have to write
down this. Only need to compute this on your own).

• Now at each iteration, besides update X, you need to compute the dual vari-
able as well. And compute the primal energy and dual energy. The stop
criterion now becomes either it exceeds the maximal iteration number or the
duality gap is less than ε.

Hint: To compute the eigenvalues of a matrix X, use the function svd(X) in matlab.
Use doc svd for more details. Besides, you might need to consider ||X||spec > 1 when
you compute the dual problem. In the template, there is a variable tol. Because of
the accuracy, instead of using σ1 > 1 directly, use (σ1 − 1) > tol, where σ1 is the
maximum eigenvalue of X.

Solution. Here, we denote G(X) and F (KX) as following:

argminX∈Rm×n ‖X‖nuc︸ ︷︷ ︸
F (KX)

+
α

2
‖PΩ(X − F )‖2︸ ︷︷ ︸

G(X)

where K is an identity matrix in this case. Now we need to compute G∗(Y ) and
F ∗(Y ).

G∗(Y ) = supX〈X, Y 〉 −
α

2
‖PΩ(X − F )‖2
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which leads to
Y − αP>Ω PΩ(X∗ − F ) = 0

⇒X∗ = X∗ij =

{
1
α
Yij + Fij, ifij ∈ Ω

0, otherwise

where X∗ is the optimal solution for G∗(Y ). Replacing X in G∗(Y ) with X∗, we get

G∗(Y ) = 〈Y
α

+ F, Y 〉|Ω +
1

2α
‖Y |Ω‖2 =

1

2α
‖Y |Ω‖2 + 〈F, Y 〉|Ω

where Y |Ω represents extracting elements from Y with index in Ω.

F ∗(Y ) = supX〈X, Y 〉 − ‖X‖nuc

which leads to
Y ∈ ∂ ‖X‖nuc

Recall that the subdifferential of nuclear norm is

∂ ‖X‖nuc = {Z ∈ Rm×n : 〈Z,X〉 = ‖X‖nuc , ‖Z‖spec ≤ 1}.

Therefore, we can get F ∗(Y ):

F ∗(Y ) =

{
0, if ‖Y ‖spec ≤ 1

∞, otherwise

Therefore, the dual problem is

argminY G
∗(−KY ) + F ∗(Y ) =

1

2α
‖Y |Ω‖2 − 〈F, Y 〉+ δ‖Y ‖spec≤1(Y )

To recover dual variable from primal variable, we use −Y = ∂G(X), which leads to

Y |Ω = α(F −X)|Ω
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