Convex Optimization for Machine Learning and Computer Vision

Lecture: Dr. Tao Wu

Exercises: Emanuel Laude, Zhenzhang Ye
Summer Semester 2018

Computer Vision Group
Institut für Informatik
Technische Universität München

Weekly Exercises 9

Room: 02.09.023 Wednesday, 27.06.2018, 12:15-14:00

Submission deadline: Monday, 25.06.2018, 16:15, Room 02.09.023

Convergence Analysis

(10+4 Points)

Exercise 1 (4 Points). Show following properties of monotone operator:

- T is monotone, $\lambda \geq 0$. Then λT is monotone.
- R, S are monotone, $\lambda \geq 0$. Then $R + \lambda S$ is monotone.

Solution. • T is monotone, therefore, $\langle u - v, Tu - Tv \rangle \geq 0$. Since $\lambda \geq 0$, multiplying λ on both sides doesn't change the direction of inequality. We get $\langle u - v, \lambda Tu - \lambda Tv \rangle \geq 0$. This shows that λT is a monotone operator.

• $\langle u-v, (R+\lambda S)u-(R+\lambda S)v\rangle$, we want to show it is larger or equal than 0.

$$\langle u - v, (R + \lambda S)u - (R + \lambda S)v \rangle$$

$$= \langle u - v, Ru - Rv \rangle + \langle u - v, \lambda Su - \lambda Sv \rangle$$

$$\geq 0$$

the inequality holds because R is monotone and λS is monotone from first conclusion.

Exercise 2 (6 Points). Denote $\Pi_C(x)$ as the projection of point x onto a nonempty closed convex set C. Show following properties:

- Π_C is a monotone operator.
- T is firmly nonexpansive, if and only if $||Tx Ty||^2 \le \langle x y, Tx Ty \rangle$, $\forall x, y$.
- Π_C is firmly nonexpansive. Hint: you might use that $\langle y - \Pi_C(x), x - \Pi_C(x) \rangle \leq 0, \forall y \in C$
- **Solution.** For any two points u and v, using the definition of projection, we have that $\|u \Pi_C(u)\|^2 \le \|u \Pi_C(v)\|^2$ and $\|v \Pi_C(v)\|^2 \le \|v \Pi_C(u)\|^2$. Summing them up, we have $\|u \Pi_C(u)\|^2 + \|v \Pi_C(v)\|^2 \le \|u \Pi_C(v)\|^2 + \|v \Pi_C(u)\|^2$.

Expanding the squares, we can get the monotonicity of Π_C .

• Recall the proposition of $\frac{1}{2}$ -averaged:

$$||(I-T)x - (I-T)y||^2 + ||Tx - Ty||^2 \le ||x - y||^2$$

Write $||(I - T)x - (I - T)Y||^2 = ||x - y||^2 + ||Tx - Ty||^2 - 2\langle x - y, Tx - Ty \rangle$, we can achieve the conclusion.

• For two points x and y. Use the hint we get $\langle \Pi_C(y) - \Pi_C(x), x - \Pi_C(x) \rangle \leq 0$ and $\langle \Pi_C(x) - \Pi_C(y), y - \Pi_C(y) \rangle \leq 0$. Adding these two yields $||\Pi_C(x) - \Pi_C(y)||^2 \leq \langle x - y, \Pi_C(X) - \Pi_C(y) \rangle$. Use the conclusion from second problem, we get the conclusion.

Exercise 3 (4 Points). Prove the theorem from the lecture:

Let C be a nonempty, closed, convex subset of \mathbb{R}^n . For each $i \in \{1, ..., m\}$, let $\alpha_i \in (0, 1)$, $\omega_i \in (0, 1)$ and $\Phi_i : C \to \mathbb{R}^n$ be an α_i -averaged operator. If $\sum_{i=1}^m \omega_i = 1$ and $\alpha = \max_{1 \le i \le m} \alpha_i$, then

$$\Phi = \sum_{i=1}^{m} \omega_i \Phi_i$$

is α -averaged.

Solution. Φ_i is α_i -averaged iff

$$\|\Phi_i(u) - \Phi_i(v)\|_2^2 + \frac{1 - \alpha_i}{\alpha_i} \|(I - \Phi_i)(u) - (I - \Phi_i)(v)\|_2^2 \le \|u - v\|_2^2,$$

for all $u, v \in C$. We have the estimate

$$\begin{split} &\|\Phi(u) - \Phi(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \|(I-\Phi)(u) - (I-\Phi)(v)\|_{2}^{2} \\ &= \left\| \sum_{i=1}^{m} \omega_{i}(\Phi_{i}(u) - \Phi_{i}(v)) \right\|_{2}^{2} + \frac{1-\alpha}{\alpha} \left\| \left(I - \sum_{i=1}^{m} \omega_{i} \Phi_{i} \right) (u) - \left(I - \sum_{i=1}^{m} \omega_{i} \Phi_{i} \right) (v) \right\|_{2}^{2} \\ &\leq \sum_{i=1}^{m} \omega_{i} \|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \left\| \sum_{i=1}^{m} \omega_{i} ((I-\Phi_{i})(u) - (I-\Phi_{i})(v)) \right\|_{2}^{2} \\ &\leq \sum_{i=1}^{m} \omega_{i} \|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \sum_{i=1}^{m} \omega_{i} \|(I-\Phi_{i})(u) - (I-\Phi_{i})(v)\|_{2}^{2} \\ &= \sum_{i=1}^{m} \omega_{i} \left(\|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \|(I-\Phi_{i})(u) - (I-\Phi_{i})(v)\|_{2}^{2} \right). \end{split}$$

Since $1 > \alpha \ge \alpha_i > 0$ for all i we have that $\frac{1}{\alpha} - 1 \le \frac{1}{\alpha_i} - 1$. Then we can further

bound:

$$\dots = \sum_{i=1}^{m} \omega_{i} \left(\|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha}{\alpha} \|(I-\Phi_{i})(u) - (I-\Phi_{i})(v)\|_{2}^{2} \right)$$

$$\leq \sum_{i=1}^{m} \omega_{i} \left(\|\Phi_{i}(u) - \Phi_{i}(v)\|_{2}^{2} + \frac{1-\alpha_{i}}{\alpha_{i}} \|(I-\Phi_{i})(u) - (I-\Phi_{i})(v)\|_{2}^{2} \right)$$

$$\leq \sum_{i=1}^{m} \omega_{i} \|u-v\|_{2}^{2} = \|u-v\|_{2}^{2}.$$