vt Computer Vision Group

Practical Course: GPU Programming in
Computer Vision
CUDA Basics

Bjorn Hafner, Robert Maier, David Schubert

Technische Universitat Miinchen
Department of Informatics
Computer Vision Group

Summer Semester 2018
September 17 - October 15

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 1/59

Computer Vision Group

Outline

Introduction
m Group Introduction
m Organizational Setup

|

Why using GPUs?

]

Kernels and Thread Hierarchy

Execution on the GPU

B B

Memory Management

Error Handling and Compiling

]

Summary

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 2/59

Computer Vision Group

Outline

Introduction
m Group Introduction
m Organizational Setup

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

3/59

EmanvelLaude LingniMa. RobertMaler

Philp Hausser Caner Hazebas Zorah Lahner Tim Meinharat

“Thomas Mlenhof David Schul

«

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4/59

Computer Vision Group Tm

Technische Universitat Manchen

Our Research Interests

S

Image-based 3D

‘;’;‘“j*"’) S

Optical Flow Estimation Shape Analysis
Convex Relaxation
Methods

bss: 4

Deep Learning

Reconstruction

RGB-D Vision Image Segmentation

Visual SLAM

Biomedicine

Scene Flow Estimation

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5/59

vte» Computer Vision Group

Organizational Setup

What is this course about?
m Parallel Programming using CUDA
m Computer Vision Basics
m Work on a cool final project
What will you learn?
m How to program parallel processors

m Acquire the technical knowledge to understand how CUDA
works

m Apply this knowledge efficiently to implement computer
vision algorithms and gain a massive speedup

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 6/59

vt Computer Vision Group

Organizational Setup

Time line:

m Lecture (September 17 - 21)
m 2-3h lectures !!lattendance is mandatory!!!
m Followed by programming exercises until open end

m Project (September 24 - October 12)
m Implement an advanced application assigned to your group
m Group of three students

m Demo day (October 15)
m Prepare a presentation and demo

m Showing off what your group achieved throughout the
project phase

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7159

vt Computer Vision Group

Organizational Setup

Lecture:
m Starts at 10 a.m. sharp!
m Don’t forget: !!lattendance is mandatory!!!
m First part of lecture corresponds to CUDA
m Short break of 15 min

m Second part of lecture corresponds to
mathematics/computer vision

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 8/59

Computer Vision Group

Organizational Setup

Exercises:
m Starts after the second part of the lecture
m Will be supervised until 4 p.m.
m Stay as long as you want to solve the assignments

m Each day a new exercise sheet based on corresponding
CUDA and math/cv lecture

m Grade bonus of 0.3 — 0.4:

m Deadline: Sunday 11.59 p.m.

m Hand in solution for all exercises

m Each student has to hand in separately and code must be
individual, i.e. copied code will not be graded and thus fail
Grade bonus achieved, if 80% or more are correct
Achieved grade bonus will be announced during project
phase

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/59

vt Computer Vision Group

Organizational Setup

Project Phase:
m Implement a computer vision algorithm in CUDA

m Form groups of three students per group, i.e. eight groups
in total

m Pick one of the projects we suggest on Friday or
m Suggest your own project

m Let us know your group and your three preferred projects
by Friday 11.59 p.m.

m Meet your advisor regularly
m If we detect cheating, everyone involved gets the grade 5.0

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10/59

vtr» Computer Vision Group

Organizational Setup

Demo day:
m Prepare a presentation of 15—-20 minutes per group
m Explain the assigned problem/project
m How did you proceed to solve it

m Each group member presents and describes his/her task in
the project

m Show your results

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/59

Computer Vision Group

Organizational Setup

Work from home during project phase:
m Access your computer in the lab from home:
ssh -p 58022 al23@hostname.informatik.tu-muenchen.de
m Replace a123 with your login handed out by us

m Replace hostname with your computer name
m type hostname in terminal to find out your computer name

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 12/59

Computer Vision Group

Outline

Why using GPUs?

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/59

Computer Vision Group Tm

ische Universitat Manchen

Why using GPUs?

Theoretical GFLOP/s at base clock
11000
10500 ——NVIDIA GPU Single Precision

10000 ——NVIDIA GPU Double Precision

9500 ——Intel CPU Single Precision
9000 +~Intel CPU Double Precision
8500
8000
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000

0
2003

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14159

Computer Vision Group

Why using GPUs?

Theoretical Peak GB/s

800
=+=GeForce GPU
700
=—4+=Tesla GPU
——Intel CPU
600
500
400
300
200
100
0
2003 2005 2007 2009 2011 2013 2015

GPU is available in every PC =—> Massive volume and impact!
Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14159

Computer Vision Group

Design Difference
CPU vs. GPU

m Different goals produce different designs
m CPU must be good at everything, parallel or not
m GPU assumes work load is highly parallel
m CPU: minimize latency experienced by 1 thread
m big on-chip caches
m sophisticated control logic
m GPU: maximize throughput of all threads
m skip big caches, multi-threading hides latency
m share control logic across many threads: Single instruction,
multiple data (SIMD)
m create and run thousands of threads

= Assumption: The problem is data parallel, i.e. same operations
can be performed independently on many separate data elements.

Many computer vision problems fulfill this assumption.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15/59

Computer Vision Group

Design Difference
CPU vs. GPU

m Different goals produce different designs
m CPU: Minimize latency using big cache and large control

logic
m GPU: Maximize throughput using SIMD and thousands of
threads
oo vl AL ALU
ALU AU

CPU GPU

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 151759

Computer Vision Group

GPU in Detail

Current Architecture

(a) Full GPU with 60 Streaming (b) One SM; Each SM has 64
Multiprocessors (SMs) CUDA Cores

Figure: Pascal Architecture with 60 - 64 = 3840 cores
Pascal Architecture in the lab: 2 x 6 SMs with 64 CUDA cores each.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16 /59

Computer Vision Group

Entering CUDA

“Compute Unified Device Architecture”

m Scalable parallel programming model

m is suitably efficient and practical when applied to large

amount of data

m thus exposes the computational horsepower of GPUs
m Abstractions for parallel computing

m let programmers focus on parallel algorithms

m not mechanics of a parallel programming language
m Minimal extensions to familiar C/C++ environment to run

code on the GPU
m Easy to learn
m but hard to master

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 17159

Computer Vision Group

CUDA

Scalable Parallel Programming

m Provide straightforward mapping onto hardware

m good fit to GPU architecture

m thus programmer can focus on parallel algorithms
m Execute code by many threads in parallel
m Scale to 100s of cores and 10000s of threads

m GPU threads are lightweight — create/switch is free
m GPU needs 1000s of threads for full utilization

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18 /59

Computer Vision Group

References

Good to know and almost mandatory to check it out

m CUDA has an excellent documentation:
B CUDA Toolkit Documentation v9.1
B CUDA Programming Guide

B Provides detailed discussion of CUDA. Describes hardware
implementation, provides guidance how to achieve maximum
performance and much more in-depth explanations

B CUDA Runtime API
m List of all CUDA functions

B https://developer.nvidia.com/gpu-accelerated-libraries
| List of “official” (third party) libraries using of CUDA

B make -C /usr/share/inf9-config-hostdb/deviceQueryDrv/ run

B Run devicefQuery sample to quickly see your hardware
specifications

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/59

vtr» Computer Vision Group

Outline of the course |

Basics (Monday; David)

m Kernels and Thread Hierarchy
m Execution on the GPU
m Memory Management
m Error Handling And Compiling
Memories (Tuesday; Robert)
m Overview of Memory Spaces
Shared Memory
Texture Memory
Constant Memory
Common Strategy for Memory Accesses

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/59

vt Computer Vision Group

Outline of the course Il

Optimization (Wednesday; Robert)
m Branch Divergence
m Pitch Allocation for 2D Images
m Host-Device Memory Transfer
m Occupancy
m Parallel reduction
Misc (Thursday; Bjorn)
m Atomics
m CUDA Streams and Events
m Multi-GPU Programming
m Third party libraries
Development Tools (Friday; Bjorn)
m CMake
m Nsight
B CUDA-MEMCHECK

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

21/59

Computer Vision Group

Outline

Kernels and Thread Hierarchy

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 22/59

Computer Vision Group

Example: CPU vs. GPU

m CPU - Processes subtasks serially one by one
for (int i = 0; i<m; i++)
{
c[il = alil + b[il;
}

m GPU - Processes each subtask in parallel

__global__ void g_vecAdd (float * a, float *b, float *c)
{

int i = threadIdx.x + blockDim.x*blockIdx.x;

clil = al[i] + blil;
}

B W N =

a A w N -

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 23/59

Computer Vision Group

Thread Hierarchy

m Threads are grouped into blocks

m Up to 512 or 1024 threads per block
m Thread indices are unique within a block

m Note: Threads from the same block can cooperate
m synchronize their execution
B communicate via shared memory
m threads from different blocks cannot cooperate
m All blocks together form a grid
m Block indices are unique within a grid

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 2459

Computer Vision Group

Thread Hierarchy

m Blocks and grids can be Grd
1D, 2D or 3D Block (. 0) || Blods (1, 0) || Block(2 0)

m Dimensions of grids and o i e
blocks are set at launch S B W

m Block dimensions can be S
different for each grid e .
m Built-in variables to access (1)
dimensions and indices:
B gridDim, blockDim
B blockIdx, threadIdx

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 25/59

vt Computer Vision Group

Index Calculation

m Aim: mapping between threads and array elements

m 1D
Block 0 Block 1

Threadlndex|o\1\2\3\4\5\6\7|0\1\2.4\5\6\7|

Array Index | 0 | 1 \2\3\4\5\6\7\8\9\10.12\13\14\15\

1 int x = threadIdx.x + blockDim.x * blockIdx.x;

m Example: 11=3+8*1

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 26/59

Computer Vision Group

Index Calculation

m 2D
Block (0,0) Block (1,0)
(0,0)((1,0)|(2,0) (3,0)I(0,0) (1,0)((2,0)((3,0)| (0,0)((1,0)|(2,0)|(3,0)|(4,0)((5,0)((6,0)|(7,0)
n (0,1)((1,1)|(2,1) (3,1)I(0,1) (1,1[(2,1)[(3,1)| (0,1)[(1,1)/(2,1)|(3,1)[(4,1)[(5,1)[(6,1)[(7,1)
8 (0,2)[(1,2)[(2,2) (3,2)I(0,2) (1,2)(2,2)|(3,2)| (0,2)[(1,2)[(2,2)[(3,2)|(4,2)|(5,2)|(6,2)|(7,2) %
E (0,3)[(1,3)[(2,3) (3,3)I(0,3) (1,3)](2,3)/(3,3)| (0,3)((1,3)[(2,3)((3,3)[(4,3)|(5,3)|(6,3), (7,3)‘5.
'8 (0,0)((1,0)((2,0) (3,0)I(0,0)-(2,0) (3,0) (0,4)((1,4)[(2,4)((3,4) (4,4).(6,4) (7,4) S_
g (0,1)[(1,1)[(2,1) (3,1)I(0,1) (1,1)](2,1)|(3;1)] (0,5)((1,5)|(2,5)}(3;5)|(4,5)|(5,5)(6,5)|(7,5) §
h (0,2)[(1,2)[(2,2) (3,2)I(0,2) (1,2)(2,2)|(3,2)| (0,6)((1,6)((2,6)|(3,6)|(4,6)|(5,6)|(6,6)|(7,6)
(0,3)[(1,3)[(2,3) (3,3)I(0,3) (1,3)](2,3)/(3,3)| (0,7)[(1,7)((2,7)((3,7)|(4,7)|(5,7)|(6,7)[(7,7)
Block (0,1) Block (1,1)

1 int x = threadldx.x + blockDim.x * blockIdx.x;
2 int y = threadIdx.y + blockDim.y * blockIdx.y;

m Example: 5=1+4*1 4=0+4*1

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 27159

Computer Vision Group

Index Calculation

m Use built-in variables to access unique indices

1 index = thread_in_block + threads_per_block * block_index;
m 1D

1 int x = threadIdx.x + blockDim.x * blockIdx.x;

m 2D

1 int x = threadIdx.x + blockDim.x * blockIdx.x;

2 int y = threadIdx.y + blockDim.y * blockIdx.y;

m 3D

1 int x = threadIdx.x + blockDim.x * blockIdx.x;

2 int y = threadldx.y + blockDim.y * blockIdx.y;

3 int z = threadldx.z + blockDim.z * blockIdx.z;

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 28/59

Computer Vision Group

Kernel Launch

m Usual C/C++ function call, with an additional specification
of grid and block sizes:

1 myKernel <<< grid, block >>>(...);

B dim3 grid; dim3 block;

m access each dimension, e.g. in the variable block:
block.x; block.y; block.z;

m CUDA kernels are launched from the CPU or GPU
m CUDA kernels are always executed on the GPU

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 29/59

Computer Vision Group

Example: One-dimensional Kernel

__global__ void myKernel (int *a, int n)

{
int ind = threadIdx.x + blockDim.x * blockIdx.x;

if (ind<n) alind] += 1;
}

int main()

{
dim3 block = dim3(128,1,1); // 128*1x1 threads per block
// ensure enough blocks to cover n elements (round up)
dim3 grid = dim3((n + block.x -1) / block.x, 1, 1);

12 myKernel <<<grid, block>>> (d_a, n);

© ©® N o o B W N -

> o

14 // Also possible:
15 // launch 4 blocks, each with 128 threads per block
16 myKernel <<<4,128>>> (d_a, n);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 30/59

Computer Vision Group

Example: Two-dimensional Kernel

__global__ void myKernel (int *a, int w, int h)

{
int x threadIdx.x + blockDim.x * blockIdx.x;
int y = threadIdx.y + blockDim.y * blockIdx.y;

1
2
3
4
5 int ind = x + w¥y; //derive linear index
6
7
8
9

if (x<w && y<h) alind] += 1;
}

int main()
10 {
1 dim3 block = dim3(32,8,1); // 32#8*1 = 256 threads per block
12
13 // ensure enough blocks to cover w * h elements (round up)
14 dim3 grid = dim3((w + block.x -1) / block.x,
15 (h + block.y - 1) / block.y, 1);
16
17 myKernel <<<grid,block>>> (d_A, w, h);
18}

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 31/59

Computer Vision Group

Why this if-statement?

m There may be more threads than array elements
—> Always test whether the indices are within bounds

__global__ void myKernel (int *a, int n)

{
int ind = threadIdx.x + blockDim.x * blockIdx.x;
if (ind<n) alind] += 1;

}

__global__ void myKernel (int *a, int w, int h)
{

int x = threadIdx.x + blockDim.x * blockIdx.x;
10 int y = threadIdx.y + blockDim.y * blockIdx.y;
1 int ind = x + wxy; //derive linear index
12 if (x<w && y<h) alind] += 1;
13}

© ®© N o o »h w N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 32/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

__global__ void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
alidx] = 7;

}

a » W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

__global__ void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
alidx] = 7;

}

6 //Output: 777 7777777777777

a » W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

__global__ void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
al[idx] = blockIdx.x;

}

a » W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

__global__ void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
al[idx] = blockIdx.x;

}

6 //Output: 0 000111122223333

a » W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

__global__ void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
a[idx] = threadIdx.x;

}

a » W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

__global__ void kernel (int *a)

{
int idx = threadIdx.x + blockDim.x * blockIdx.x;
a[idx] = threadIdx.x;

}

6 //Output: 01 23012301230123

a » W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33/59

Computer Vision Group

Code Executed on GPU

GPU Function Type Qualifiers

Terminology: CPU is called host!
GPU is called device!

m _global _:kernels
m launched by CPU to run on the GPU must return void

m _ device__: auxiliary GPU functions
m launched by _global _or _device__ functions to run on
the GPU

B host_ : “normal” CPU C/C++ functions
m launched by CPU to run on the CPU

B host _ _ device__: qualifiers can be combined
m callable from CPU and from GPU

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 34/59

Computer Vision Group

Code Executed on GPU

Crucial Restrictions

m On CPU: only access CPU memory

m On GPU: only access GPU memory
m GPU can access CPU memory:
B Page-Locked Host Memory (special allocation of host
memory)
m from CUDA 6: Unified Memory (managed memory space
with coherent memory of device and host)
m no access to host functions
m no static variables in functions or classes
m static variable for functions possible: __device _ volatile
keyword
m from CUDA 7: variadic templates variable number of
arguments

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 35/59

Computer Vision Group

Code Executed on GPU

Features

m Many C/C++ features available for GPU code
m templates
m recursion (CC >= 2.0)
m overloading
m function overloading
B operator overloading
m classes
m stack allocation
H heap allocation (CC >= 2.0)
B inheritance, virtual functions (CC >= 2.0)
m function pointers (CC >= 2.0)
m printf () formatted output (CC >= 2.0)
m Vector variants of basic types
m float2, float3, float4, double2, int4, char?2, etc.
B float2 a = make_float2(1,2); a.x = 10; a.y = a.x;

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 36/59

Computer Vision Group

Blocks

Must Be Independent

m Any possible ordering of blocks should be valid

m Can run in any order (order is unspecified)
m Can run concurrently OR sequentially

m Blocks may coordinate but not synchronize
m Independence requirement gives scalability

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 37/59

Computer Vision Group

Execution of Kernels

Asynchronous

m Kernel launches are asynchronous w.r.t. CPU

m after kernel launch, immediately control returns
m CPU is free to do other work while the GPU is busy

m Kernel launches are queued

m kernel does not start until previous kernels are finished
m concurrent kernels possible for CUDA >= 7.0: Streams
(given enough resources)

m Explicit synchronization, if needed
m Use cudaDeviceSynchronize ()

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 38/59

Computer Vision Group

Outline

Execution on the GPU

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 39/59

vt Computer Vision Group

NVIDIA GPU Architecture

m Each GPU can have up to 10 (Tesla), 16 (Fermi), 15
(Kepler), 24 (Maxwell) or 60 (Pascal) independent
Streaming Multiprocessors (SMs)

m No shared resources across SMs, except global memory
m No synchronization, always work in parallel

m Each SM can have 24 (Tesla), 32 (Fermi), 192 (Kepler),
128 (Maxwell) or 64 (Pascal) CUDA cores.

m In total a GPU can have 240 (Tesla), 512 (Fermi), 2880
(Kepler), 3072 (Maxwell) or 3840 (Pascal) cores

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 40/59

Computer Vision Group

Execution of Kernels on the GPU

m Blocks are distributed across SMs
m Active blocks

m are currently executed

m reside on a multiprocessor
m resources allocated

m executed until finished

m Waiting blocks

m wait to be executed
m not yet assigned to a SM

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

41/59

Tum

Computer Vision Group

[llustration of Architecture

i lﬂ o) [L 0 [2. 0)
)» PERaseiss .»)))).» J2000 .s}))}p)))}a
(aftaatiy | JEISItrens | Areaiiredite

GPU with 25Ms |mlni||4sus

| sMO " SM1 | " sM0 H sM1 H sM2 " sM3 "

=

42159

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

vt Computer Vision Group

Blocks Execute on Multiprocessors

m Each block is executed on one Multiprocessor (SM)

m cannot migrate
m reason for block independence

m Several blocks per SM possible

m if enough resources available
m SM resources are divided among all blocks

m Block threads share SM resources

m SM registers are divided up among the threads
m SM shared memory can be read/written by all threads

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 43 /59

Computer Vision Group

Warps

Key Architectural Idea

m SIMT (Single Instruction Multiple Thread) execution
m threads run in groups of 32 called warps

m All 32 threads in a warp execute the same instruction
m always, no matter what (even if threads diverge)

m Threads are executed warp-wise by the GPU

m for each warp, the 32 threads are executed in parallel
m warps are executed one after another
m but several warps can run simultaneously

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 44 /59

Computer Vision Group

Warps in Multiprocessors

m Resources are allocated for all potential warps
m the state of every potentially executable warp is always
present on the Multiprocessor, until finished
m overall many more potentially executable threads than
CUDA Cores possible
m Switching between warps is free and any non-waiting warp
can run

m At each clock cycle each warp scheduler chooses a single
warp which is ready to be executed

m For each chosen warp the next instruction is executed for
all 32 threads of the warp

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 45/59

Computer Vision Group

Example

m Assume there are six blocks on one (out of four) SM(s).
Each block has 128 threads

m Threads from all blocks are divided into warps:
6(blocks)*128(threads/block)/32=24 warps, i.e. 4 warps
from every block

m Having two warp schedulers, two (out of 24) warps can be
executed in parallel

Warp Scheduler Warp Scheduler

Instruction Dispatch Unit | Instruction Dispatch Unit
AHREARRRRARRARRRRARRAARAR N

|
Warp 14 instruction 95 Warp 15 instruction 95

Warp 8 instruction 12 Warp 9 instruction 12
Warp 14 instruction 96 Warp 3 instruction 34
Warp 2 instruction 43 Warp 15 instruction 96

time

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 46 /59

Computer Vision Group

Outline

Memory Management

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 47159

Computer Vision Group

GPU Memory

m CPU and GPU have separate memory spaces

m data is moved across PCle bus
m use functions to allocate/set/copy memory on GPU

B cudaMalloc, cudaMemset, cudaFree

m Pointers are just addresses
m cannot tell from pointer if memory is on GPUs or CPU
B but possible using unified virtual addressing
m dereference with caution:

B crash if GPU dereferences pointer to CPU memory and vice
versa

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 48 /59

Computer Vision Group

Allocate and Release GPU Memory

m Host (CPU) manages device (GPU) memory:

B cudaMalloc(void **pointer, size_t nbytes)
B cudaMemset(void *pointer, int value, size_t count)
B cudaFree(void* pointer)

1 int n = 1024;
2 size_t nbytes = (size_t) (n)*sizeof(int);
3 int *d_a = NULL;

5 cudaMalloc(&d_a, nbytes); //allocate memory on device
6 cudaMemset(d_a, 0, nbytes); //fill array with 0 valued !ints!

7 cudaFree(d_a); //free memory on device again

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 49/59

Computer Vision Group

Copy Data between CPU and GPU

B cudaMemcpy (void *dst, void *src, size_t nbytes,
cudaMemcpyKind direction);

m blocks the CPU thread until all bytes have been copied

m non-blocking variants are also available

m doesn’t start copying until all previous CUDA calls complete
B cudaMemcpyKind

B cudaMemcpyHostToDevice

B cudaMemcpyDeviceToHost

B cudaMemcpyDeviceToDevice

1 cudaMemcpy(dev_ptr,

2 host_ptr,
3 (size_t) (n) *sizeof (float),
4 cudaMemcpyHostToDevice) ;

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 50/59

Computer Vision Group mm

Technische Universitat Manchen

Example Host Code

// allocate and initialize host (CPU) memory
float *h_a = ..., *h_b = ...; *h_c = ...; (empty)

// allocate device (GPU) memory

float *d_a, *d_b, *d_c;

cudaMalloc(&d_a, n * sizeof(float));
cudaMalloc(&d_b, n * sizeof(float));
cudaMalloc(&d_c, n * sizeof(float));

©ON® U A WN =

10 // copy host memory to device
11 cudaMemcpy(d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice);
12 cudaMemcpy(d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice);

14 // launch kernel

15 dim3 block = dim3(128,1,1);

16 dim3 grid = dim3((n + block.x -1) / block.x, 1, 1);
17 vecAdd <<<grid,block>>> (d_a, d_b, d_c);

19 // copy result back to host (CPU) memory
20 cudaMemcpy(h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost);

22 // do something with the result...

24 // free device (GPU) memory
25 cudaFree(d_a);
26 cudaFree(d_b);
27 cudaFree(d_c);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 51/59

Computer Vision Group

Use float by Default!!!

m GPUs can handle double
m But f1oat operations are still much faster

m by an order of magnitude

B SO use double only if f1oat is really not enough
m Avoid using double, unless necessary

m Add 'f’ suffix to float literals:

W 0.f,1.0f, 3.1415f are of type float
H 0.0,1.0, 3.1415 are of type double

m Use float version of math functions:

B expf /logf / sinf / sqrtf / etc. take and return f1oat
M exp/log/sin/ sqrt/ etc. take and return double

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 52/59

Computer Vision Group

Blocks Size

How to choose

m Number of threads per block should be multiple of 32

m because threads are always executed in groups of 32
(buzzword: warps)

m Rules of thumb:

m not too small or too big: between 128 and 256 threads
m start with din3(32,8,1), i.e. 256 threads per block
m experiment with similar sized "multiple-of-32”-blocks:
W dim3(64,4,1),dim3(128,2,1), dim3(32,4,1),
dim3(64,2,1)
W dim3(32,16,1), dim3(64,8,1), dim3(128,4,1),
dim3(256,2,1)

m measure the run time and choose the best block size!

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 53/59

Computer Vision Group

Outline

A Error Handling and Compiling

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 54 /59

Computer Vision Group

Error Handling

m Checking for errors is crucial for programming GPUs
B cudaError_t cudaGetLastError()
m returns the code for the last error
m resets the error flag back to cudaSuccess
B cudaPeekAtLastError (): get error code without resetting it
m if everything OK: cudaSuccess
B char* cudaGetErrorString(cudaError_t code)
m returns a C-string describing the error

cudaMalloc(&d_a, n*sizeof(float));

cudaError_t e = cudaGetLastError();

if (e'!=cudaSuccess)

{
cerr << "ERROR: " << cudaGetErrorString(e) << endl;
exit(1);

}

N o o b W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 55/59

Computer Vision Group

Error Handling

m Kernel execution is asynchronous
m first force to wait for the kernel to finish by
cudaDeviceSynchronize ()
m only then call cudaGetLastError ()
m otherwise it will be called too soon, the error may not have
yet occurred
m kernel launch itself may produce errors due to invalid
configurations
B too many threads/block, too many blocks, too much shared
memory requested
m Kernels may produce subtle memory corruption errors
m may get unnoticed even after cudaDeviceSynchronize ()
m subsequent CUDA calls may or may not fail because of
such an error
m if they do fail, they were not the origin of the error
m It helps to keep track of the previous {1,2,...,10} CUDA

calls

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 56 /59

Computer Vision Group

Compiling

m CUDA files have ending .cu: squareArray.cu
m NVidia CUDA Compiler: nvce

m handles the CUDA part
m hands over pure C/C++ part to host compiler
nvcc -o squareArray squareArray.cu

m Additional info about the kernels using --ptxas-options=-v:

nvcc -o squareArray squareArray.cu --ptxas-options=-v
ptxas info: Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10'

ptxas info: Used 2 registers, 28 bytes smem

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 57/59

Computer Vision

Outline

Summary

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 58 /59

Computer Vision Group

Summary
Cheat Sheat

m Thread Hierarchy:
m thread- smallest executable unit
m varp - group of 32 threads
B block - group of threads, shared memory for collaboration
m grid - consists of several blocks
m Keyword extensions for C/C++:
B __global__ - kernel-function called by CPU, executed on

GPU

B _ device__ -function called by GPU and executed on GPU

B __host__ - [optionall-function called and executed by
CPU

m <<<...>>> -Kkernel launch, chevrons specify grid and
block sizes

m Compilation:

B nvcc -o <executable> <filename>.cu

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 59/59

	Introduction
	Why using GPUs?
	Kernels and Thread Hierarchy
	Execution on the GPU
	Memory Management
	Error Handling and Compiling
	Summary

