
Computer Vision Group

Practical Course: GPU Programming in

Computer Vision

CUDA Basics

Björn Häfner, Robert Maier, David Schubert

Technische Universität München

Department of Informatics

Computer Vision Group

Summer Semester 2018

September 17 - October 15

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 1 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 2 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 3 / 59

Computer Vision Group

Computer Vision Group

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4 / 59

Computer Vision Group

Our Research Interests

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5 / 59

Computer Vision Group

Organizational Setup

What is this course about?

Parallel Programming using CUDA

Computer Vision Basics

Work on a cool final project

What will you learn?

How to program parallel processors

Acquire the technical knowledge to understand how CUDA

works

Apply this knowledge efficiently to implement computer

vision algorithms and gain a massive speedup

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 6 / 59

Computer Vision Group

Organizational Setup

Time line:

Lecture (September 17 - 21)

2–3h lectures !!!attendance is mandatory!!!

Followed by programming exercises until open end

Project (September 24 - October 12)

Implement an advanced application assigned to your group

Group of three students

Demo day (October 15)

Prepare a presentation and demo

Showing off what your group achieved throughout the

project phase

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7 / 59

Computer Vision Group

Organizational Setup

Lecture:

Starts at 10 a.m. sharp!

Don’t forget: !!!attendance is mandatory!!!

First part of lecture corresponds to CUDA

Short break of 15 min

Second part of lecture corresponds to

mathematics/computer vision

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 8 / 59

Computer Vision Group

Organizational Setup

Exercises:

Starts after the second part of the lecture

Will be supervised until 4 p.m.

Stay as long as you want to solve the assignments

Each day a new exercise sheet based on corresponding

CUDA and math/cv lecture

Grade bonus of 0.3 – 0.4:

Deadline: Sunday 11.59 p.m.

Hand in solution for all exercises

Each student has to hand in separately and code must be

individual, i.e. copied code will not be graded and thus fail

Grade bonus achieved, if 80% or more are correct

Achieved grade bonus will be announced during project

phase

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9 / 59

Computer Vision Group

Organizational Setup

Project Phase:

Implement a computer vision algorithm in CUDA

Form groups of three students per group, i.e. eight groups

in total

Pick one of the projects we suggest on Friday or

Suggest your own project

Let us know your group and your three preferred projects

by Friday 11.59 p.m.

Meet your advisor regularly

If we detect cheating, everyone involved gets the grade 5.0

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10 / 59

Computer Vision Group

Organizational Setup

Demo day:

Prepare a presentation of 15–20 minutes per group

Explain the assigned problem/project

How did you proceed to solve it

Each group member presents and describes his/her task in

the project

Show your results

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11 / 59

Computer Vision Group

Organizational Setup

Work from home during project phase:

Access your computer in the lab from home:

ssh -p 58022 a123@hostname.informatik.tu-muenchen.de
Replace a123 with your login handed out by us
Replace hostname with your computer name

type hostname in terminal to find out your computer name

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 12 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13 / 59

Computer Vision Group

Why using GPUs?

GPU is available in every PC =⇒ Massive volume and impact!Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14 / 59

Computer Vision Group

Why using GPUs?

GPU is available in every PC =⇒ Massive volume and impact!
Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14 / 59

Computer Vision Group

Design Difference
CPU vs. GPU

Different goals produce different designs

CPU must be good at everything, parallel or not

GPU assumes work load is highly parallel

CPU: minimize latency experienced by 1 thread

big on-chip caches

sophisticated control logic

GPU: maximize throughput of all threads

skip big caches, multi-threading hides latency

share control logic across many threads: Single instruction,

multiple data (SIMD)

create and run thousands of threads

=⇒ Assumption: The problem is data parallel, i.e. same operations

can be performed independently on many separate data elements.

Many computer vision problems fulfill this assumption.

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15 / 59

Computer Vision Group

Design Difference
CPU vs. GPU

Different goals produce different designs
CPU: Minimize latency using big cache and large control

logic

GPU: Maximize throughput using SIMD and thousands of

threads

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15 / 59

Computer Vision Group

GPU in Detail
Current Architecture

(a) Full GPU with 60 Streaming

Multiprocessors (SMs)

(b) One SM; Each SM has 64

CUDA Cores

Figure: Pascal Architecture with 60 · 64 = 3840 cores

Pascal Architecture in the lab: 2× 6 SMs with 64 CUDA cores each.

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16 / 59

Computer Vision Group

Entering CUDA
“Compute Unified Device Architecture”

Scalable parallel programming model

is suitably efficient and practical when applied to large

amount of data

thus exposes the computational horsepower of GPUs

Abstractions for parallel computing

let programmers focus on parallel algorithms

not mechanics of a parallel programming language

Minimal extensions to familiar C/C++ environment to run
code on the GPU

Easy to learn

but hard to master

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 17 / 59

Computer Vision Group

CUDA
Scalable Parallel Programming

Provide straightforward mapping onto hardware

good fit to GPU architecture

thus programmer can focus on parallel algorithms

Execute code by many threads in parallel

Scale to 100s of cores and 10000s of threads

GPU threads are lightweight – create/switch is free

GPU needs 1000s of threads for full utilization

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18 / 59

Computer Vision Group

References
Good to know and almost mandatory to check it out

CUDA has an excellent documentation:

CUDA Toolkit Documentation v9.1
CUDA Programming Guide

Provides detailed discussion of CUDA. Describes hardware

implementation, provides guidance how to achieve maximum

performance and much more in-depth explanations

CUDA Runtime API
List of all CUDA functions

https://developer.nvidia.com/gpu-accelerated-libraries
List of “official” (third party) libraries using of CUDA

make -C /usr/share/inf9-config-hostdb/deviceQueryDrv/ run

Run deviceQuery sample to quickly see your hardware

specifications

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19 / 59

Computer Vision Group

Outline of the course I

1 Basics (Monday; David)

Kernels and Thread Hierarchy

Execution on the GPU

Memory Management

Error Handling And Compiling

2 Memories (Tuesday; Robert)

Overview of Memory Spaces

Shared Memory

Texture Memory

Constant Memory

Common Strategy for Memory Accesses

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20 / 59

Computer Vision Group

Outline of the course II

1 Optimization (Wednesday; Robert)

Branch Divergence

Pitch Allocation for 2D Images

Host-Device Memory Transfer

Occupancy

Parallel reduction

2 Misc (Thursday; Björn)

Atomics

CUDA Streams and Events

Multi-GPU Programming

Third party libraries

3 Development Tools (Friday; Björn)

CMake

Nsight

CUDA-MEMCHECK

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 21 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 22 / 59

Computer Vision Group

Example: CPU vs. GPU

CPU - Processes subtasks serially one by one

1 for (int i = 0; i<n; i++)
2 {
3 c[i] = a[i] + b[i];
4 }

GPU - Processes each subtask in parallel

1 __global__ void g_vecAdd (float * a, float *b, float *c)
2 {
3 int i = threadIdx.x + blockDim.x*blockIdx.x;
4 c[i] = a[i] + b[i];
5 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 23 / 59

Computer Vision Group

Thread Hierarchy

Threads are grouped into blocks

Up to 512 or 1024 threads per block

Thread indices are unique within a block

Note: Threads from the same block can cooperate

synchronize their execution

communicate via shared memory

threads from different blocks cannot cooperate

All blocks together form a grid

Block indices are unique within a grid

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24 / 59

Computer Vision Group

Thread Hierarchy

Blocks and grids can be

1D, 2D or 3D

Dimensions of grids and

blocks are set at launch

Block dimensions can be

different for each grid

Built-in variables to access
dimensions and indices:

gridDim, blockDim
blockIdx, threadIdx

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 25 / 59

Computer Vision Group

Index Calculation

Aim: mapping between threads and array elements

1D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Array Index

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Block 0 Block 1

Thread Index

1 int x = threadIdx.x + blockDim.x * blockIdx.x;

Example: 11 = 3 + 8 * 1

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 26 / 59

Computer Vision Group

Index Calculation

2D

a
rra

y
in
d
ic
e
s

th
re
a
d
in
d
ic
e
s

(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(0,6)

(0,7)

(1,0)

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

(1,7)

(2,0)

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

(2,7)

(3,0)

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

(3,7)

(4,0)

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

(4,7)

(5,0)

(5,1)

(5,2)

(5,3)

(5,4)

(5,5)

(5,6)

(5,7)

(6,0)

(6,1)

(6,2)

(6,3)

(6,4)

(6,5)

(6,6)

(6,7)

(7,0)

(7,1)

(7,2)

(7,3)

(7,4)

(7,5)

(7,6)

(7,7)

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

1 int x = threadIdx.x + blockDim.x * blockIdx.x;
2 int y = threadIdx.y + blockDim.y * blockIdx.y;

Example: 5 = 1 + 4 * 1 4 = 0 + 4 * 1

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 27 / 59

Computer Vision Group

Index Calculation

Use built-in variables to access unique indices

1 index = thread_in_block + threads_per_block * block_index;

1D

1 int x = threadIdx.x + blockDim.x * blockIdx.x;

2D

1 int x = threadIdx.x + blockDim.x * blockIdx.x;
2 int y = threadIdx.y + blockDim.y * blockIdx.y;

3D

1 int x = threadIdx.x + blockDim.x * blockIdx.x;
2 int y = threadIdx.y + blockDim.y * blockIdx.y;
3 int z = threadIdx.z + blockDim.z * blockIdx.z;

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 28 / 59

Computer Vision Group

Kernel Launch

Usual C/C++ function call, with an additional specification

of grid and block sizes:
1 myKernel <<< grid, block >>>(...);

dim3 grid; dim3 block;
access each dimension, e.g. in the variable block:
block.x; block.y; block.z;

CUDA kernels are launched from the CPU or GPU

CUDA kernels are always executed on the GPU

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 29 / 59

Computer Vision Group

Example: One-dimensional Kernel

1 __global__ void myKernel (int *a, int n)
2 {
3 int ind = threadIdx.x + blockDim.x * blockIdx.x;
4 if (ind<n) a[ind] += 1;
5 }
6

7 int main()
8 {
9 dim3 block = dim3(128,1,1); // 128*1*1 threads per block
10 // ensure enough blocks to cover n elements (round up)
11 dim3 grid = dim3((n + block.x –1) / block.x, 1, 1);
12 myKernel <<<grid, block>>> (d_a, n);
13

14 // Also possible:
15 // launch 4 blocks, each with 128 threads per block
16 myKernel <<<4,128>>> (d_a, n);
17 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 30 / 59

Computer Vision Group

Example: Two-dimensional Kernel

1 __global__ void myKernel (int *a, int w, int h)
2 {
3 int x = threadIdx.x + blockDim.x * blockIdx.x;
4 int y = threadIdx.y + blockDim.y * blockIdx.y;
5 int ind = x + w*y; //derive linear index
6 if (x<w && y<h) a[ind] += 1;
7 }
8

9 int main()
10 {
11 dim3 block = dim3(32,8,1); // 32*8*1 = 256 threads per block
12

13 // ensure enough blocks to cover w * h elements (round up)
14 dim3 grid = dim3((w + block.x –1) / block.x,
15 (h + block.y - 1) / block.y, 1);
16

17 myKernel <<<grid,block>>> (d_A, w, h);
18 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 31 / 59

Computer Vision Group

Why this if-statement?

There may be more threads than array elements

=⇒ Always test whether the indices are within bounds

1 __global__ void myKernel (int *a, int n)
2 {
3 int ind = threadIdx.x + blockDim.x * blockIdx.x;
4 if (ind<n) a[ind] += 1;
5 }
6

7 __global__ void myKernel (int *a, int w, int h)
8 {
9 int x = threadIdx.x + blockDim.x * blockIdx.x;
10 int y = threadIdx.y + blockDim.y * blockIdx.y;
11 int ind = x + w*y; //derive linear index
12 if (x<w && y<h) a[ind] += 1;
13 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 32 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = 7;
5 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = 7;
5 }

6 //Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = blockIdx.x;
5 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = blockIdx.x;
5 }

6 //Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = threadIdx.x;
5 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Exercise: IDs of Threads and Blocks

kernel<<<4,4>>>(d_a);

1 __global__ void kernel (int *a)
2 {
3 int idx = threadIdx.x + blockDim.x * blockIdx.x;
4 a[idx] = threadIdx.x;
5 }

6 //Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 33 / 59

Computer Vision Group

Code Executed on GPU
GPU Function Type Qualifiers

Terminology: CPU is called host!

GPU is called device!

__global__: kernels
launched by CPU to run on the GPU must return void

__device__: auxiliary GPU functions

launched by __global__ or __device__ functions to run on
the GPU

__host__: “normal” CPU C/C++ functions

launched by CPU to run on the CPU

__host__ __device__: qualifiers can be combined
callable from CPU and from GPU

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 34 / 59

Computer Vision Group

Code Executed on GPU
Crucial Restrictions

On CPU: only access CPU memory

On GPU: only access GPU memory

GPU can access CPU memory:

Page-Locked Host Memory (special allocation of host

memory)

from CUDA 6: Unified Memory (managed memory space

with coherent memory of device and host)

no access to host functions
no static variables in functions or classes

static variable for functions possible: __device__ volatile
keyword

from CUDA 7: variadic templates variable number of

arguments

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 35 / 59

Computer Vision Group

Code Executed on GPU
Features

Many C/C++ features available for GPU code

templates

recursion (CC >= 2.0)
overloading

function overloading

operator overloading

classes

stack allocation

heap allocation (CC >= 2.0)

inheritance, virtual functions (CC >= 2.0)

function pointers (CC >= 2.0)

printf() formatted output (CC >= 2.0)

Vector variants of basic types

float2, float3, float4, double2, int4, char2, etc.
float2 a = make_float2(1,2); a.x = 10; a.y = a.x;

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 36 / 59

Computer Vision Group

Blocks
Must Be Independent

Any possible ordering of blocks should be valid

Can run in any order (order is unspecified)

Can run concurrently OR sequentially

Blocks may coordinate but not synchronize

Independence requirement gives scalability

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 37 / 59

Computer Vision Group

Execution of Kernels
Asynchronous

Kernel launches are asynchronous w.r.t. CPU

after kernel launch, immediately control returns

CPU is free to do other work while the GPU is busy

Kernel launches are queued

kernel does not start until previous kernels are finished

concurrent kernels possible for CUDA >= 7.0: Streams

(given enough resources)

Explicit synchronization, if needed

Use cudaDeviceSynchronize()

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 38 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 39 / 59

Computer Vision Group

NVIDIA GPU Architecture

Each GPU can have up to 10 (Tesla), 16 (Fermi), 15

(Kepler), 24 (Maxwell) or 60 (Pascal) independent

Streaming Multiprocessors (SMs)

No shared resources across SMs, except global memory

No synchronization, always work in parallel

Each SM can have 24 (Tesla), 32 (Fermi), 192 (Kepler),

128 (Maxwell) or 64 (Pascal) CUDA cores.

In total a GPU can have 240 (Tesla), 512 (Fermi), 2880

(Kepler), 3072 (Maxwell) or 3840 (Pascal) cores

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 40 / 59

Computer Vision Group

Execution of Kernels on the GPU

Blocks are distributed across SMs

Active blocks

are currently executed

reside on a multiprocessor

resources allocated

executed until finished

Waiting blocks

wait to be executed

not yet assigned to a SM

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 41 / 59

Computer Vision Group

Illustration of Architecture

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 42 / 59

Computer Vision Group

Blocks Execute on Multiprocessors

Each block is executed on one Multiprocessor (SM)

cannot migrate

reason for block independence

Several blocks per SM possible

if enough resources available

SM resources are divided among all blocks

Block threads share SM resources

SM registers are divided up among the threads

SM shared memory can be read/written by all threads

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 43 / 59

Computer Vision Group

Warps
Key Architectural Idea

SIMT (Single Instruction Multiple Thread) execution

threads run in groups of 32 called warps

All 32 threads in a warp execute the same instruction

always, no matter what (even if threads diverge)

Threads are executed warp-wise by the GPU

for each warp, the 32 threads are executed in parallel

warps are executed one after another

but several warps can run simultaneously

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 44 / 59

Computer Vision Group

Warps in Multiprocessors

Resources are allocated for all potential warps

the state of every potentially executable warp is always

present on the Multiprocessor, until finished

overall many more potentially executable threads than

CUDA Cores possible

Switching between warps is free and any non-waiting warp

can run

At each clock cycle each warp scheduler chooses a single

warp which is ready to be executed

For each chosen warp the next instruction is executed for

all 32 threads of the warp

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 45 / 59

Computer Vision Group

Example

Assume there are six blocks on one (out of four) SM(s).
Each block has 128 threads

Threads from all blocks are divided into warps:

6(blocks)*128(threads/block)/32=24 warps, i.e. 4 warps

from every block

Having two warp schedulers, two (out of 24) warps can be

executed in parallel

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 46 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 47 / 59

Computer Vision Group

GPU Memory

CPU and GPU have separate memory spaces

data is moved across PCIe bus
use functions to allocate/set/copy memory on GPU

cudaMalloc, cudaMemset, cudaFree

Pointers are just addresses

cannot tell from pointer if memory is on GPUs or CPU

but possible using unified virtual addressing

dereference with caution:

crash if GPU dereferences pointer to CPU memory and vice

versa

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 48 / 59

Computer Vision Group

Allocate and Release GPU Memory

Host (CPU) manages device (GPU) memory:

cudaMalloc(void **pointer, size_t nbytes)
cudaMemset(void *pointer, int value, size_t count)
cudaFree(void* pointer)

1 int n = 1024;
2 size_t nbytes = (size_t)(n)*sizeof(int);
3 int *d_a = NULL;
4

5 cudaMalloc(&d_a, nbytes); //allocate memory on device
6 cudaMemset(d_a, 0, nbytes); //fill array with 0 valued !ints!
7 cudaFree(d_a); //free memory on device again

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 49 / 59

Computer Vision Group

Copy Data between CPU and GPU

cudaMemcpy (void *dst, void *src, size_t nbytes,
cudaMemcpyKind direction);

blocks the CPU thread until all bytes have been copied

non-blocking variants are also available

doesn’t start copying until all previous CUDA calls complete

cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

1 cudaMemcpy(dev_ptr,
2 host_ptr,
3 (size_t)(n)*sizeof(float),
4 cudaMemcpyHostToDevice);

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 50 / 59

Computer Vision Group

Example Host Code

1 // allocate and initialize host (CPU) memory
2 float *h_a = ..., *h_b = ...; *h_c = ...; (empty)
3

4 // allocate device (GPU) memory
5 float *d_a, *d_b, *d_c;
6 cudaMalloc(&d_a, n * sizeof(float));
7 cudaMalloc(&d_b, n * sizeof(float));
8 cudaMalloc(&d_c, n * sizeof(float));
9

10 // copy host memory to device
11 cudaMemcpy(d_a, h_a, n * sizeof(float), cudaMemcpyHostToDevice);
12 cudaMemcpy(d_b, h_b, n * sizeof(float), cudaMemcpyHostToDevice);
13

14 // launch kernel
15 dim3 block = dim3(128,1,1);
16 dim3 grid = dim3((n + block.x –1) / block.x, 1, 1);
17 vecAdd <<<grid,block>>> (d_a, d_b, d_c);
18

19 // copy result back to host (CPU) memory
20 cudaMemcpy(h_c, d_c, n * sizeof(float), cudaMemcpyDeviceToHost);
21

22 // do something with the result...
23

24 // free device (GPU) memory
25 cudaFree(d_a);
26 cudaFree(d_b);
27 cudaFree(d_c);

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 51 / 59

Computer Vision Group

Use float by Default!!!

GPUs can handle double

But float operations are still much faster
by an order of magnitude

so use double only if float is really not enough
Avoid using double, unless necessary

Add ’f’ suffix to float literals:
0.f, 1.0f, 3.1415f are of type float
0.0, 1.0, 3.1415 are of type double

Use float version of math functions:
expf / logf / sinf / sqrtf / etc. take and return float
exp / log / sin / sqrt / etc. take and return double

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 52 / 59

Computer Vision Group

Blocks Size
How to choose

Number of threads per block should be multiple of 32

because threads are always executed in groups of 32

(buzzword: warps)

Rules of thumb:

not too small or too big: between 128 and 256 threads

start with dim3(32,8,1), i.e. 256 threads per block
experiment with similar sized ”multiple-of-32”-blocks:

dim3(64,4,1), dim3(128,2,1), dim3(32,4,1),
dim3(64,2,1)
dim3(32,16,1), dim3(64,8,1), dim3(128,4,1),
dim3(256,2,1)

measure the run time and choose the best block size!

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 53 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 54 / 59

Computer Vision Group

Error Handling

Checking for errors is crucial for programming GPUs

cudaError_t cudaGetLastError()
returns the code for the last error

resets the error flag back to cudaSuccess
cudaPeekAtLastError(): get error code without resetting it
if everything OK: cudaSuccess

char* cudaGetErrorString(cudaError_t code)
returns a C-string describing the error

1 cudaMalloc(&d_a, n*sizeof(float));
2 cudaError_t e = cudaGetLastError();
3 if (e!=cudaSuccess)
4 {
5 cerr << "ERROR: " << cudaGetErrorString(e) << endl;
6 exit(1);
7 }

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 55 / 59

Computer Vision Group

Error Handling

Kernel execution is asynchronous
first force to wait for the kernel to finish by

cudaDeviceSynchronize()
only then call cudaGetLastError()

otherwise it will be called too soon, the error may not have

yet occurred

kernel launch itself may produce errors due to invalid
configurations

too many threads/block, too many blocks, too much shared

memory requested

Kernels may produce subtle memory corruption errors
may get unnoticed even after cudaDeviceSynchronize()
subsequent CUDA calls may or may not fail because of

such an error

if they do fail, they were not the origin of the error

It helps to keep track of the previous {1, 2, ..., 10} CUDA
calls

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 56 / 59

Computer Vision Group

Compiling

CUDA files have ending .cu: squareArray.cu
NVidia CUDA Compiler: nvcc

handles the CUDA part

hands over pure C/C++ part to host compiler

nvcc -o squareArray squareArray.cu

Additional info about the kernels using --ptxas-options=-v:

nvcc -o squareArray squareArray.cu --ptxas-options=-v
ptxas info: Compiling entry function '_Z18cuda_square_kernelPfi' for 'sm_10'

ptxas info: Used 2 registers, 28 bytes smem

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 57 / 59

Computer Vision Group

Outline

1 Introduction

Group Introduction

Organizational Setup

2 Why using GPUs?

3 Kernels and Thread Hierarchy

4 Execution on the GPU

5 Memory Management

6 Error Handling and Compiling

7 Summary

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 58 / 59

Computer Vision Group

Summary
Cheat Sheat

Thread Hierarchy:
thread- smallest executable unit
warp - group of 32 threads

block - group of threads, shared memory for collaboration

grid - consists of several blocks

Keyword extensions for C/C++:
__global__ - kernel-function called by CPU, executed on
GPU

__device__ - function called by GPU and executed on GPU

__host__ - [optional]-function called and executed by

CPU

<<<...>>> - kernel launch, chevrons specify grid and

block sizes

Compilation:
nvcc -o <executable> <filename>.cu

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 59 / 59

	Introduction
	Why using GPUs?
	Kernels and Thread Hierarchy
	Execution on the GPU
	Memory Management
	Error Handling and Compiling
	Summary

