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Outline

1 Performance metrics of algorithms running on a GPU
occupancy
data bandwidth and instruction throughput

2 Maximize instruction throughput
branch divergence

3 Maximize memory throughput
pitched allocation for images

4 parallel reduction: an example of optimization
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occupancy

occupancy =
active threads

max. threads per SM

Multiprocessors (SMs) can have many more active threads
than there are CUDA Cores
High occupancy is important, because if some threads
stall, the SM can switch to others
Pool of limited resources per SM
Occupancy determined by

Register usage per thread
Shared memory per block
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Resource limits

Each block grabs registers and shared memory
If one or the other is fully utilized:
no more blocks per SM possible
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Find Out Resource Usage

Compile with nvcc option -ptxas-options=-v
Per kernel registers and (static) shared memory:
ptxas info: Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'

ptxas info: Used 4 registers, 44 bytes smem

Amount of resources per multiprocessor:
./deviceQuery
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data bandwidth and instruction throughput
data bandwidth: How much data do we process per second?

Minimize data transfers with low bandwidth (host - device,
global memory - device)
Make use of the different types of memory
Align your 2D array to make use of coalescing

instruction throughput: How many instructions do we
execute per second?

Trade precision for speed
Minimize branch divergence
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branch divergence
Reminder: All 32 threads of a warp execute the same
instruction. Always!

1 __global__ void kernel (float *result, float *input)
2 {
3 int i = threadIdx.x + blockDim.x*blockIdx.x;
4 if (input[i]>0)
5 result[i] = 1.f;
6 else
7 result[i] = 0.f;
8 }

What if different paths are taken within a warp?
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Serialization

Each path is taken by each thread.
Threads that should take an other path are marked
inactive.
The execution of the warp is serialized.
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Serialization cont.

Also happens with the following statements: for, while,
switch

Worst case: 1 active thread, 31 inactive ⇒ performance is
reduced to 1/32 ≈ 3%

No divergence if all threads take the same path.
if (tid/32 == 0) {...}
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Linear allocation

one can allocate 2d images as 1d arrays and access in a
linearized way: img[x+w*y]
this works, but is in general suboptimal for CUDA
for a 6*3 float image, the addresses &img[x+6*y] are

read/write accesses are fastest when the starting address
of each row is a multiple of a big power of 2.
(most common: 128)
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pitched allocation for images cont.

the total new width in bytes is called pitch

here: pitch = 32 bytes (=8*sizeof(float))
in general pitch != multiple of element size

float3 array

adding padding bytes at the end of each row resolves this

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14 / 26



Computer Vision Group

pitched allocation for images cont.

on host:
1 float *d_a;
2 size_t pitch;
3 cudaMallocPitch(&d_a, &pitch, w*sizeof(float), h);

in kernel:
1 float value =
2 *((float*)( (char*)a + x*sizeof(float) + pitch*y) );

Copying: cudaMemcpy2D(...)
For 3D-Data: cudaMalloc3D(...)
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Want to process very large arrays

Keep all the SM busy

each block reduces a part of the array but how do we
communicate the partial results in an efficient way?
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CUDA does not have global synchronization

solution: decompose into multiple kernels and use launch
as synchronization point

two different metrics of performance: bandwidth and
GFLOP/s
Reductions have low arithmetric intensity ⇒ bandwidth is
the proper metric
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A first implementation
1 __global__ void reduce0(int *g_idata, int *g_odata) {
2 extern __shared__ int sdata[];
3
4 // each thread loads one element from global to shared mem
5 unsigned int tid = threadIdx.x;
6 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
7 sdata[tid] = g_idata[i];
8 __syncthreads();
9
10 // do reduction in shared mem
11 for(unsigned int s=1; s < blockDim.x; s *= 2) {
12 if (tid % (2*s) == 0) {
13 sdata[tid] += sdata[tid + s];
14 }
15 __syncthreads();
16 }
17
18 // write result for this block to global mem
19 if (tid == 0) g_odata[blockIdx.x] = sdata[0];
20 }
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how can we accelerate the code?

hint: branch divergence
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This is already better, but still we can improve a lot.

Let’s take a closer look at the shared memory:
On modern GPUs the shared memory is divided into 32
banks.
Adresses in different banks can be read at the same time.
If different threads within a warp want to read different
adresses from a single bank, the accesses are executed in
serial.
Successive 32-bit words are assigned to successive banks
This is commonly refered to as a bank conflict
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After a few additional optimizations, this is the final speed up:

for the full details see:
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 26 / 26

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

	Performance metrics of algorithms running on a GPU
	Maximize instruction throughput
	Maximize memory throughput
	parallel reduction: an example of optimization

