vte. Computer Vision Group

Practical Course: GPU Programming in
Computer Vision
Optimization

Bjorn Hafner, Robert Maier, David Schubert

Technische Universitat Miinchen
Department of Informatics
Computer Vision Group

Summer Semester 2018
September 17 - October 15

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 1/26

Computer Vision Group

Outline

Performance metrics of algorithms running on a GPU
m occupancy
m data bandwidth and instruction throughput

Maximize instruction throughput
m branch divergence

Maximize memory throughput
m pitched allocation for images

parallel reduction: an example of optimization

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 2/26

Computer Vision Group

Outline

Performance metrics of algorithms running on a GPU
m occupancy
m data bandwidth and instruction throughput

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 3/26

Computer Vision Group

occupancy

active threads

occupancy = max. threads per SM

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4/26

Computer Vision Group

occupancy

active threads
max. threads per SM

occupancy =

m Multiprocessors (SMs) can have many more active threads
than there are CUDA Cores

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4/26

vt Computer Vision Group

occupancy

active threads

OCCUPANCY = [ax. threads per SM

m Multiprocessors (SMs) can have many more active threads
than there are CUDA Cores

m High occupancy is important, because if some threads
stall, the SM can switch to others

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4126

vt Computer Vision Group

occupancy

active threads

OCCUPANCY = [ax. threads per SM

m Multiprocessors (SMs) can have many more active threads
than there are CUDA Cores

m High occupancy is important, because if some threads
stall, the SM can switch to others

m Pool of limited resources per SM

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4126

vt Computer Vision Group

occupancy

active threads
max. threads per SM

occupancy =

m Multiprocessors (SMs) can have many more active threads
than there are CUDA Cores

m High occupancy is important, because if some threads
stall, the SM can switch to others

m Pool of limited resources per SM

m Occupancy determined by

m Register usage per thread
m Shared memory per block

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4126

Computer Vision Group

Resource limits

Registers Shared Memory Registers Shared Memory

m Each block grabs registers and shared memory

m If one or the other is fully utilized:
no more blocks per SM possible

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5/26

Computer Vision Group

Find Out Resource Usage

m Compile with nvcc option -ptxas-options=-v
m Per kernel registers and (static) shared memory:

ptxas info: Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'

ptxas info: Used 4 registers, 44 bytes smem

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 6/26

Computer Vision Group

Find Out Resource Usage

m Compile with nvcc option -ptxas-options=-v
m Per kernel registers and (static) shared memory:

ptxas info: Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'

ptxas info: Used 4 registers, 44 bytes smem

m Amount of resources per multiprocessor:
./deviceQuery

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 6/26

vt Computer Vision Group

data bandwidth and instruction throughput

data bandwidth: How much data do we process per second?

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7126

vt Computer Vision Group

data bandwidth and instruction throughput

data bandwidth: How much data do we process per second?

m Minimize data transfers with low bandwidth (host - device,
global memory - device)

m Make use of the different types of memory
m Align your 2D array to make use of coalescing

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7126

vt Computer Vision Group

data bandwidth and instruction throughput

data bandwidth: How much data do we process per second?

m Minimize data transfers with low bandwidth (host - device,
global memory - device)

m Make use of the different types of memory
m Align your 2D array to make use of coalescing

instruction throughput: How many instructions do we
execute per second?

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7126

vte» Computer Vision Group

data bandwidth and instruction throughput

data bandwidth: How much data do we process per second?

m Minimize data transfers with low bandwidth (host - device,
global memory - device)

m Make use of the different types of memory
m Align your 2D array to make use of coalescing

instruction throughput: How many instructions do we
execute per second?

m Trade precision for speed
m Minimize branch divergence

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7126

Computer Vision Group

Outline

Maximize instruction throughput
m branch divergence

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 8/26

Computer Vision Group

branch divergence

Reminder: All 32 threads of a warp execute the same
instruction.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/26

Computer Vision Group

branch divergence

Reminder: All 32 threads of a warp execute the same
instruction. Always!

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/26

Computer Vision Group

branch divergence

Reminder: All 32 threads of a warp execute the same
instruction. Always!

__global__ void kernel (float *result, float *input)
{
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.f;
else
result[i] = 0.f;

©® N O O wWN =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/26

Computer Vision Group

branch divergence

Reminder: All 32 threads of a warp execute the same
instruction. Always!

__global__ void kernel (float *result, float *input)
{
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.f;
else

result[i] = 0.f;

©® N O O wWN =

}
What if different paths are taken within a warp?

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/26

Tum

Technische Universitat Manchen

threadIdx.x:

input[i] :

input[i]1>0:

1

active inactive

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10/26

threadIdx.x:

input[i] :

input[i]1>0:

active inactive

m Each path is taken by each thread.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10/26

threadIdx.x:

input[i] :

input[i]1>0:

active inactive

m Each path is taken by each thread.

m Threads that should take an other path are marked
inactive.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10/26

threadIdx.x:

input[i] :

input[i]1>0:

active inactive

m Each path is taken by each thread.

m Threads that should take an other path are marked
inactive.

m The execution of the warp is serialized.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10/26

Computer Vision Group

Serialization cont.

m Also happens with the following statements: for, while,
switch

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/26

Computer Vision Group

Serialization cont.

m Also happens with the following statements: for, while,
switch

m Worst case: 1 active thread, 31 inactive = performance is
reduced to 1/32 ~ 3%

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/26

vt Computer Vision Group

Serialization cont.

m Also happens with the following statements: for, while,
switch

m Worst case: 1 active thread, 31 inactive = performance is
reduced to 1/32 ~ 3%

m No divergence if all threads take the same path.
if (tid/32 == 0) {...}

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/26

Computer Vision Group

Outline

Maximize memory throughput
m pitched allocation for images

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 12126

Computer Vision Group

Linear allocation

m one can allocate 2d images as 1d arrays and access in a
linearized way: img [x+w*y]

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/26

Computer Vision Group

Linear allocation

m one can allocate 2d images as 1d arrays and access in a
linearized way: img [x+w*y]

m this works, but is in general suboptimal for CUDA

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/26

Computer Vision Group

Linear allocation

m one can allocate 2d images as 1d arrays and access in a
linearized way: img [x+w*y]

m this works, but is in general suboptimal for CUDA
m for a 6*3 float image, the addresses &img[x+6xy] are

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/26

vt» Computer Vision Group

Linear allocation

m one can allocate 2d images as 1d arrays and access in a
linearized way: img [x+w*y]

m this works, but is in general suboptimal for CUDA
m for a 6*3 float image, the addresses &img[x+6xy] are

m read/write accesses are fastest when the starting address
of each row is a multiple of a big power of 2.
(most common: 128)

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/26

vte» Computer Vision Group

pitched allocation for images cont.

m the total new width in bytes is called pitch

m here: pitch = 32 bytes (=8*sizeof(float))
m in general pitch != multiple of element size
m float3 array

adding padding bytes at the end of each row resolves this

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14726

Computer Vision Group

pitched allocation for images cont.

m on host:

1 float *d_a;

2 size_t pitch;

3 cudaMallocPitch(&d_a, &pitch, wksizeof(float), h);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15/26

pitched allocation for images cont.

m on host:

1 float *d_a;
2 size_t pitch;
3 cudaMallocPitch(&d_a, &pitch, wksizeof(float), h);

m in kernel:

1 float value =
2 x((floatx*) ((charx)a + x*sizeof (float) + pitch*y));

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15/26

Computer Vision Group

pitched allocation for images cont.

m on host:

1 float *d_a;
2 size_t pitch;
3 cudaMallocPitch(&d_a, &pitch, wksizeof(float), h);

m in kernel:

1 float value =
2 x((floatx*) ((charx)a + x*sizeof (float) + pitch*y));

m Copying: cudaMemcpy2D(. . .)
m For 3D-Data: cudaMalloc3D(...)

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15/26

Computer Vision Group

Outline

parallel reduction: an example of optimization

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16 /26

Computer Vision Group

m Want to process very large arrays

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 17126

Computer Vision Group

m Want to process very large arrays

m Keep all the SM busy

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 17126

Computer Vision Group

m Want to process very large arrays

m Keep all the SM busy

m each block reduces a part of the array but how do we
communicate the partial results in an efficient way?

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 17126

Computer Vision Group

m CUDA does not have global synchronization

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/26

Computer Vision Group

m CUDA does not have global synchronization

m solution: decompose into multiple kernels and use launch
as synchronization point

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/26

Computer Vision Group

m CUDA does not have global synchronization

m solution: decompose into multiple kernels and use launch
as synchronization point

m two different metrics of performance: bandwidth and
GFLOP/s

m Reductions have low arithmetric intensity = bandwidth is
the proper metric

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/26

Computer Vision Group

m CUDA does not have global synchronization

m solution: decompose into multiple kernels and use launch
as synchronization point

m two different metrics of performance: bandwidth and
GFLOP/s

m Reductions have low arithmetric intensity = bandwidth is
the proper metric

W@@WWWWW (ool

8 blocks

/
ROCNRN \ / ,/, -
N 7 -

e

! Level 1:
1 block

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/26

Computer Vision Group Tm

Technische Universitat Manchen

A first implementation

__global__ void reduceO(int *g_idata, int *g_odata) {
extern __shared__ int sdatal];

1
2
3
4 // each thread loads one element from global to shared mem
5 unsigned int tid = threadIdx.x;
6 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
7 sdataltid] = g_idatalil;
8 __syncthreads();

9

10 // do reduction in shared mem

11 for(unsigned int s=1; s < blockDim.x; s *= 2) {

12 if (tid % (2%s) == 0) {

13 sdatal[tid] += sdatal[tid + s];
14 }

15 __syncthreads();

16}

17

18 // write result for this block to global mem
19 if (tid == 0) g_odatal[blockIdx.x] = sdatal0];
20}

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/26

Computer Vision Group

A first implementation

w
[|
[+ |
bJ
[|
N
o |
2
o
[|

Values (shared memory)l 10| 1 | 8 | -1 | 0 | -2 |

Step 1 Thread
Stride 1 IDs

Values [11] 1|7 [-1] 2] 2]

Step 2 Thread
Stride 2 IDs

Values (18] 1 [7 [-1]6 [2|85 |

al-3|o|713[11]2]2]
Step 3 Thread
Strie:e4 "rJesa @'_/

*%

-]
o
u|
W
©w
~
o
2
a
2
N
N

Values (24 1 [7 [-1]6[2]8 |5 [17[3[0o7[13]11]2]2]
Step 4 Thread)
Stride 8 IDs)

values [41[1 [7 [-1]6[2]8 |5 [17[ao]7[13]11]2]2]

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

20/26

vte» Computer Vision Group m

fechnische

how can we accelerate the code?

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 21/26

vte» Computer Vision Group m

fechnische

how can we accelerate the code?

hint: branch divergence

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 21/26

Computer Vision Group

Just replace divergent branch in inner loop:
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

With strided index and non-divergent branch:

for (unsigned int s=1; s < biockam X; S *= 2) {
-~ int index 2*g tid

- if (:ndex < blocthm x) {
5 sdata{mdex] = sdata[mdex + s],

__syncthreads();

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 22/26

Computer Vision Group

Step 1
Stride 1

Step 2
Stride 2

Step 3
Stride 4

Step 4
Stride 8

&) &7 & & &7 &

Values [11| 1|7 []2|-2]8[5]s5|-3]0[7][1|1n]2]2]

Thread
IDs

Values [18| 1 [7 [-1]6|-2[8[5]a|-3]0[7[13[1n]2]2]

Thread
IDs

Values (24| 1 [7 [-1]6 |-2|8 |5 [17]-3]0[7[13[1]|2]2]

Thread
IDs

Values [a1| 1|7 [-1]6|-2[8[5[17]-3]0[7[13[n]|2]2]

¢
4

O+

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

23/26

Computer Vision Group

m This is already better, but still we can improve a lot.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24 /26

Computer Vision Group

m This is already better, but still we can improve a lot.

m Let’s take a closer look at the shared memory:

m On modern GPUs the shared memory is divided into 32
banks.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24 /26

Computer Vision Group

m This is already better, but still we can improve a lot.

m Let’s take a closer look at the shared memory:
m On modern GPUs the shared memory is divided into 32
banks.
m Adresses in different banks can be read at the same time.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24126

Computer Vision Group

m This is already better, but still we can improve a lot.

m Let’s take a closer look at the shared memory:
m On modern GPUs the shared memory is divided into 32
banks.
m Adresses in different banks can be read at the same time.
m [f different threads within a warp want to read different
adresses from a single bank, the accesses are executed in
serial.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24126

Computer Vision Group

m This is already better, but still we can improve a lot.

m Let’s take a closer look at the shared memory:

m On modern GPUs the shared memory is divided into 32
banks.

m Adresses in different banks can be read at the same time.

m [f different threads within a warp want to read different
adresses from a single bank, the accesses are executed in
serial.

m Successive 32-bit words are assigned to successive banks

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24126

Computer Vision Group

m This is already better, but still we can improve a lot.

m Let’s take a closer look at the shared memory:

m On modern GPUs the shared memory is divided into 32
banks.

m Adresses in different banks can be read at the same time.

m [f different threads within a warp want to read different
adresses from a single bank, the accesses are executed in
serial.

m Successive 32-bit words are assigned to successive banks

m This is commonly refered to as a bank conflict

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24126

Computer Vision Group

Values(sharedmemory)|10|1 |8|-1|0|-2‘3|5|-2|-3|2‘7|0|11|0|2|

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread

IDs 012@/@/567

Values [8 [2[1w0] 6 [o[o[a[7]2]a[2a]7]o]1n]o]2]
Thread Yt

bs @OO

Values [8 | 7 [13[13] oo 372327 [0 11]0]2]
Thread %

os @@

values [21]20[13[13[o[9 [3[7[2[a]2 |7][0 [11]0]2]

Thread
IDs

Values [41]20[13]13[0 o |37 [-2[a]2 |7 [0 [11]0][2]

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

25/26

Computer Vision

After a few additional optimizations, this is the final speed up:

Step Cumulative
Time (222ints) Bandwidth speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

interleaved addressing 3.456 ms 4.854 GB/s 2.33x 2.33x
with bank conflicts

Kernel 3: 1722ms 9.741GB/s 2.01x 4.68x
sequential addressing

Kernel 4:

St add Goic) gleval load 0.965ms 17.377 GB/s 1.78x 8.34x
Kernel 5: 0536 ms 31.289GB/s 1.8x 15.01x
unroll last warp

Kemel©: 0.381ms 43.996GB/s 1.41x 21.16x
Kernel 7: 0.268 ms 62.671 GB/s 1.42x 30.04x

multiple elements per thread

for the full details see:

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 26/26

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

	Performance metrics of algorithms running on a GPU
	Maximize instruction throughput
	Maximize memory throughput
	parallel reduction: an example of optimization

