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Outline

Performance metrics of algorithms running on a GPU
m occupancy
m data bandwidth and instruction throughput

Maximize instruction throughput
m branch divergence

Maximize memory throughput
m pitched allocation for images

parallel reduction: an example of optimization
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occupancy

active threads

occupancy = max. threads per SM
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occupancy

active threads
max. threads per SM

occupancy =

m Multiprocessors (SMs) can have many more active threads
than there are CUDA Cores

m High occupancy is important, because if some threads
stall, the SM can switch to others

m Pool of limited resources per SM

m Occupancy determined by

m Register usage per thread
m Shared memory per block
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Resource limits

Registers Shared Memory Registers Shared Memory

m Each block grabs registers and shared memory

m If one or the other is fully utilized:
no more blocks per SM possible
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Find Out Resource Usage

m Compile with nvcc option -ptxas-options=-v
m Per kernel registers and (static) shared memory:

ptxas info: Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'

ptxas info: Used 4 registers, 44 bytes smem
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Find Out Resource Usage

m Compile with nvcc option -ptxas-options=-v
m Per kernel registers and (static) shared memory:

ptxas info: Compiling entry function '_Z10add_kernelPfPKfS1_i' for 'sm_10'

ptxas info: Used 4 registers, 44 bytes smem

m Amount of resources per multiprocessor:
./deviceQuery
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data bandwidth and instruction throughput

data bandwidth: How much data do we process per second?
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data bandwidth and instruction throughput

data bandwidth: How much data do we process per second?

m Minimize data transfers with low bandwidth (host - device,
global memory - device)

m Make use of the different types of memory
m Align your 2D array to make use of coalescing

instruction throughput: How many instructions do we
execute per second?

m Trade precision for speed
m Minimize branch divergence
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Outline

Maximize instruction throughput
m branch divergence
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branch divergence

Reminder: All 32 threads of a warp execute the same
instruction.
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branch divergence

Reminder: All 32 threads of a warp execute the same
instruction. Always!

__global__ void kernel (float *result, float *input)
{
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.f;
else
result[i] = 0.f;
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branch divergence

Reminder: All 32 threads of a warp execute the same
instruction. Always!

__global__ void kernel (float *result, float *input)
{
int i = threadIdx.x + blockDim.x*blockIdx.x;
if (input[i]>0)
result[i] = 1.f;
else

result[i] = 0.f;

©® N O O wWN =

}
What if different paths are taken within a warp?
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threadIdx.x:

input[i] :

input[i]1>0:

1

active inactive
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threadIdx.x:

input[i] :

input[i]1>0:

active inactive

m Each path is taken by each thread.

m Threads that should take an other path are marked
inactive.

m The execution of the warp is serialized.
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Serialization cont.

m Also happens with the following statements: for, while,
switch
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Serialization cont.

m Also happens with the following statements: for, while,
switch

m Worst case: 1 active thread, 31 inactive = performance is
reduced to 1/32 ~ 3%
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Serialization cont.

m Also happens with the following statements: for, while,
switch

m Worst case: 1 active thread, 31 inactive = performance is
reduced to 1/32 ~ 3%

m No divergence if all threads take the same path.
if (tid/32 == 0) {...}
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Outline

Maximize memory throughput
m pitched allocation for images
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Linear allocation

m one can allocate 2d images as 1d arrays and access in a
linearized way: img [x+w*y]
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Linear allocation

m one can allocate 2d images as 1d arrays and access in a
linearized way: img [x+w*y]

m this works, but is in general suboptimal for CUDA
m for a 6*3 float image, the addresses &img[x+6xy] are

m read/write accesses are fastest when the starting address
of each row is a multiple of a big power of 2.
(most common: 128)
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pitched allocation for images cont.

m the total new width in bytes is called pitch

m here: pitch = 32 bytes (=8*sizeof(float))
m in general pitch != multiple of element size
m float3 array

adding padding bytes at the end of each row resolves this
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pitched allocation for images cont.

m on host:

1 float *d_a;

2 size_t pitch;

3 cudaMallocPitch(&d_a, &pitch, wksizeof(float), h);
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m on host:

1 float *d_a;
2 size_t pitch;
3 cudaMallocPitch(&d_a, &pitch, wksizeof(float), h);

m in kernel:

1 float value =
2 x((floatx*) ( (charx)a + x*sizeof (float) + pitch*y) );
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pitched allocation for images cont.

m on host:

1 float *d_a;
2 size_t pitch;
3 cudaMallocPitch(&d_a, &pitch, wksizeof(float), h);

m in kernel:

1 float value =
2 x((floatx*) ( (charx)a + x*sizeof (float) + pitch*y) );

m Copying: cudaMemcpy2D(. . .)
m For 3D-Data: cudaMalloc3D(...)
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Outline

parallel reduction: an example of optimization
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m Want to process very large arrays
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m Want to process very large arrays

m Keep all the SM busy

m each block reduces a part of the array but how do we
communicate the partial results in an efficient way?
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m CUDA does not have global synchronization
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m CUDA does not have global synchronization

m solution: decompose into multiple kernels and use launch
as synchronization point

m two different metrics of performance: bandwidth and
GFLOP/s

m Reductions have low arithmetric intensity = bandwidth is
the proper metric
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A first implementation

__global__ void reduceO(int *g_idata, int *g_odata) {
extern __shared__ int sdatal];

1
2
3
4 // each thread loads one element from global to shared mem
5 unsigned int tid = threadIdx.x;
6 unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
7 sdataltid] = g_idatalil;
8 __syncthreads();

9

10 // do reduction in shared mem

11 for(unsigned int s=1; s < blockDim.x; s *= 2) {

12 if (tid % (2%s) == 0) {

13 sdatal[tid] += sdatal[tid + s];
14 }

15 __syncthreads();

16}

17

18 // write result for this block to global mem
19 if (tid == 0) g_odatal[blockIdx.x] = sdatal0];
20}
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A first implementation
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fechnische

how can we accelerate the code?
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fechnische

how can we accelerate the code?

hint: branch divergence
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Just replace divergent branch in inner loop:
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

With strided index and non-divergent branch:

for (unsigned int s=1; s < biockam X; S *= 2) {
-~ int index 2*g tid

- if (:ndex < blocthm x) {
5 sdata{mdex] = sdata[mdex + s],

__syncthreads();
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Step 1
Stride 1

Step 2
Stride 2

Step 3
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m This is already better, but still we can improve a lot.
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m This is already better, but still we can improve a lot.

m Let’s take a closer look at the shared memory:

m On modern GPUs the shared memory is divided into 32
banks.

m Adresses in different banks can be read at the same time.

m [f different threads within a warp want to read different
adresses from a single bank, the accesses are executed in
serial.

m Successive 32-bit words are assigned to successive banks

m This is commonly refered to as a bank conflict
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After a few additional optimizations, this is the final speed up:

Step  Cumulative
Time (222ints) Bandwidth speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

interleaved addressing 3.456 ms 4.854 GB/s 2.33x 2.33x
with bank conflicts

Kernel 3: 1722ms 9.741GB/s  2.01x 4.68x
sequential addressing

Kernel 4:

St add Goic) gleval load 0.965ms 17.377 GB/s 1.78x 8.34x
Kernel 5: 0536 ms 31.289GB/s  1.8x 15.01x
unroll last warp

Kemel©: 0.381ms 43.996GB/s  1.41x  21.16x
Kernel 7: 0.268 ms 62.671 GB/s  1.42x 30.04x

multiple elements per thread

for the full details see:

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
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