vte. Computer Vision Group

Practical Course: GPU Programming in
Computer Vision
CUDA Miscellaneous

Bjorn Hafner, Robert Maier, David Schubert

Technische Universitat Miinchen
Department of Informatics
Computer Vision Group

Summer Semester 2018
September 17 - October 15

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 1/25

Computer Vision Group

Outline

Atomics

Streams and Events

Multi-GPU Programming

Third-party Libraries

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 2/25

Computer Vision

Outline

Atomics

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 3/25

Computer Vision Group

Communication Through Memory

m Question:

__global__ void race()

{
__shared__ int my_shared_variable;
my_shared_variable = threadldx.x;

// what is the value of my_shared_variable?

3

N o g B W N =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 4/25

Computer Vision Group

Communication Through Memory

m This is a race condition

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5/25

Computer Vision Group

Communication Through Memory

m This is a race condition
m The result is undefined

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5/25

vt Computer Vision Group

Communication Through Memory

m This is a race condition
m The result is undefined

m The order in which threads access the variable is
undefined without explicit coordination

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5/25

vte» Computer Vision Group

Communication Through Memory

m This is a race condition
m The result is undefined

m The order in which threads access the variable is
undefined without explicit coordination

m Use atomic operations (e.g., atomicAdd) to enforce
well-defined semantics

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 5/25

Computer Vision Group

Atomics

m Use atomic operations to ensure exclusive access to a
variable

// assume *p_result is initialized to O
__global__ void sum(int *input, int *p_result)
{

atomicAdd(p_result, input[threadIdx.x]);

// after this kernel exits, the value of
// *p_result will be the sum of the inputs
}

©® N o o »~ W N -

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 6/25

Computer Vision Group

Atomics Imply Serialization

m Atomic operations are costly!

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7125

Computer Vision Group

Atomics Imply Serialization

m Atomic operations are costly!
m They imply serialized access to a variable

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7125

Computer Vision Group

Atomics Imply Serialization

m Atomic operations are costly!
m They imply serialized access to a variable

m = use them only if there is no other better way to achieve
your task

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7125

Computer Vision Group

Atomics Imply Serialization

__global__ void sum(int *input, int *p_result)
{

atomicAdd(p_result, input[threadIdx.x]);
}

// how many threads will contend
// for exclusive access to p_result?
sum <<<10,128>>> (input,p_result);

©® N o a »~ W N -

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 8/25

vte» Computer Vision Group

Atomics: Hierarchical Summation

>

533 6453

Divide & Conquer:
B __shared__ partial sums: atomicAdd per thread

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/25

vt Computer Vision Group

Atomics: Hierarchical Summation

>

{5%? { 523 {' éé

Divide & Conquer:
m __shared__ partial sums: atomicAdd per thread
m global total sum: atomicAdd per block

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 9/25

Computer Vision Group

Atomics: Hierarchical Summation

__global__ void sum(int *input, int *result)
{

__shared__ int partial_sum;

1
2
3
4
5 // thread 0 is responsible for initializing partial_sum
6 if (threadIdx.x == 0) partial_sum = O;

7 __syncthreads();

8

9 // each thread updates the partial sum

10 atomicAdd(&partial_sum, input[threadIldx.x]);

1 __syncthreads();

13 // thread 0 updates the total sum
14 if (threadIdx.x == 0) atomicAdd(result, partial_sum);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 10/25

Computer Vision Group

Advice: Shared Memory and Atomics

m Always use barriers such as __syncthreads () ; to wait
until __shared__ data is ready

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/25

Computer Vision Group

Advice: Shared Memory and Atomics

m Always use barriers such as __syncthreads () ; to wait
until __shared__ data is ready

m Prefer barriers to atomics when data access patterns are
regular or predictable

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/25

Computer Vision Group

Advice: Shared Memory and Atomics

m Always use barriers such as __syncthreads () ; to wait
until __shared__ data is ready

m Prefer barriers to atomics when data access patterns are
regular or predictable

m Prefer atomics to barriers when data access patterns are
sparse or unpredictable

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/25

Computer Vision Group

Advice: Shared Memory and Atomics

m Always use barriers such as __syncthreads() ; to wait
until __shared__ data is ready

m Prefer barriers to atomics when data access patterns are
regular or predictable

m Prefer atomics to barriers when data access patterns are
sparse or unpredictable

m Atomics to __shared__ variables are much faster than
atomics to global variables

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 11/25

Computer Vision Group

Outline

Streams and Events

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 12125

Computer Vision Group

Disclaimer

m | haven't tried out most of what will follow myself

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/25

Computer Vision Group

Disclaimer

m | haven't tried out most of what will follow myself
m Proceed with caution ©

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/25

Computer Vision Group

Disclaimer

m | haven't tried out most of what will follow myself
m Proceed with caution ©

m Check out the samples in the SDK and look up
documentation

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 13/25

Computer Vision Group

Streams

m Concurrency is handled through streams
m overlap kernel execution with another kernel execution

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14 /25

Computer Vision Group

Streams

m Concurrency is handled through streams

m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14/25

Computer Vision Group

Streams

m Concurrency is handled through streams
m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy
m overlap memcpy with another memcpy

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14/25

Computer Vision Group

Streams

m Concurrency is handled through streams

m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy

m overlap memcpy with another memcpy

m wait for certains kernels, but not for others

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14725

Computer Vision Group

Streams

m Concurrency is handled through streams
m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy
m overlap memcpy with another memcpy
m wait for certains kernels, but not for others
B Stream = sequence of commands executed in order

m different streams may execute concurrently, but not
guaranteed

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14725

Computer Vision Group

Streams

m Concurrency is handled through streams

m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy
m overlap memcpy with another memcpy
m wait for certains kernels, but not for others
B Stream = sequence of commands executed in order
m different streams may execute concurrently, but not
guaranteed

m depends on hardware and the kind of operations executed
in the streams

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14725

Computer Vision Group

Streams

m Concurrency is handled through streams

m overlap kernel execution with another kernel execution

m overlap kernel execution with a memcpy

m overlap memcpy with another memcpy

m wait for certains kernels, but not for others

B Stream = sequence of commands executed in order

m different streams may execute concurrently, but not
guaranteed

m depends on hardware and the kind of operations executed
in the streams

B default streamis O: if no stream specified

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14725

Computer Vision Group

Streams

m Concurrency is handled through streams

m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy

m overlap memcpy with another memcpy

m wait for certains kernels, but not for others

B Stream = sequence of commands executed in order

m different streams may execute concurrently, but not
guaranteed

m depends on hardware and the kind of operations executed
in the streams

B default streamis O: if no stream specified

m so everything without an explicitly specified stream
executes in order

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 14725

Computer Vision Group Tm

Technische Universitat Manchen

Streams

1 cudaStream_t streaml; cudaStream_t stream?2;

2 cudaStreamCreate(&streaml); cudaStreamCreate(&stream2);

3 float *h_ptr; cudaMallocHost(&h_ptr, size);

4

5 // (potentially) overlapping execution

6 cudaMemcpyAsync(h_ptr, d_ptr, size, dir, streaml);

7 kernel <<<grid,block,0,stream2>>> (...);

8

9 // check whether memcpy has finished

10 cudaError_t res = cudaStreamQuery(streaml);

11 if (res==cudaSuccess) { ... }

12

13 // or: wait for completion:

14 cudaStreamSynchronize(streaml); // will only wait for the memcpy
15 cudaStreamSynchronize(stream2); // will only wait for the kernel
16

17 cudaStreamDestroy(&streaml); cudaStreamDestroy(&stream2);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15/25

Computer Vision Group

Events

m Monitor device’s progress

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/25

Computer Vision Group

Events

m Monitor device’s progress
m Asynchronously record events at any point in the program

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/25

Computer Vision Group

Events

m Monitor device’s progress
m Asynchronously record events at any point in the program

m Event recorded when all commands in stream completed

m measure elapsed time for CUDA calls (clock cycle
precision)

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/25

Computer Vision Group

Events

m Monitor device’s progress

m Asynchronously record events at any point in the program
m Event recorded when all commands in stream completed

m measure elapsed time for CUDA calls (clock cycle
precision)
m query the status of an asynchronous CUDA call

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/25

Computer Vision Group

Events

m Monitor device’s progress

m Asynchronously record events at any point in the program
m Event recorded when all commands in stream completed
m measure elapsed time for CUDA calls (clock cycle
precision)
m query the status of an asynchronous CUDA call
m block CPU until CUDA calls prior to the event are completed

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/25

Comiputer Vision

Events

m Monitor device’s progress

m Asynchronously record events at any point in the program
m Event recorded when all commands in stream completed

m measure elapsed time for CUDA calls (clock cycle
precision)

m query the status of an asynchronous CUDA call

m block CPU until CUDA calls prior to the event are completed

cudaEvent_t start; cudaEvent_t stop;

cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start,0); // default stream
kernel <<<grid,block>>> (...);
cudaEventRecord(stop,0) ; // default stream

cudaEventSynchronize(stop); // block until "stop" recorded
float t; cudaEventElapsedTime(&t, start, stop);
cudaEventDestroy(start); cudaEventDestroy(end);

©® N o g A wWN =

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/25

Computer Vision Group

Outline

Multi-GPU Programming

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 17125

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices
B cudaGetDeviceCount (int *count);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices

B cudaGetDeviceCount (int *count);
B cudaSetDevice(int device);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices

B cudaGetDeviceCount (int *count);
B cudaSetDevice(int device);
B cudaGetDevice(int *current_device);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices

B cudaGetDeviceCount (int *count);

B cudaSetDevice(int device);

B cudaGetDevice(int *current_device);

B cudaGetDeviceProperties(cudaDeviceProp *prop, int
device);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices
B cudaGetDeviceCount (int *count);
B cudaSetDevice(int device);
B cudaGetDevice(int *current_device);
B cudaGetDeviceProperties(cudaDeviceProp *prop, int
device);

m Multi-GPU setting: device 0 is used by default

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:
B cudaMalloc(...) allocates on the cur. dev. only

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.
m Kernels execute only on the cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:
B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.
m Kernels execute only on the cur. dev.
®m cudaDeviceSynchronize() waits only for cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:
B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.
m Kernels execute only on the cur. dev.
®m cudaDeviceSynchronize() waits only for cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.

m Kernels execute only on the cur. dev.

®m cudaDeviceSynchronize() waits only for cur. dev.

m GPUs are independent: kernels run in parallel

1 cudaSetDevice(0); mykernell <<<gridil,blocki1>>> (dO_a, n0_a);
2 cudaSetDevice(1); mykernel2 <<<grid2,block2>>> (dl_a, nl_a);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);
m From CC>2.0: Direct access between GPUs
m Kernel on device x can read memory on device y
B memcopies are done automatically

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

m Kernel on device x can read memory on device y

B memcopies are done automatically
m utilizes unified virtual addressing

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

m Kernel on device x can read memory on device y

B memcopies are done automatically
m utilizes unified virtual addressing
m must be explicitly enabled:

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

m Kernel on device x can read memory on device y

B memcopies are done automatically

m utilizes unified virtual addressing

m must be explicitly enabled:

B cudaDeviceEnablePeerAccess(dev_peer, 0);

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

m Kernel on device x can read memory on device y

memcopies are done automatically

utilizes unified virtual addressing

must be explicitly enabled:
cudaDeviceEnablePeerAccess(dev_peer, 0);
enables current device to access memory of dev_peer

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 20/25

Computer Vision Group

Outline

Third-party Libraries

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 21/25

Technische Universitat Manchen

Computer Vision Group mm

Linear Algebra and Math Libraries

=

cuBLAS CUDA Math Library cuSPARSE
GPU-accelerated standard BLAS library GPU-accelerated standard mathematical function GPU-accelerated BLAS for sparse matrices
library

cuRAND cuSOLVER AmgX
GPU-accelerated random number generation Dense and sparse direct solvers for Computer GPU accelerated linear solvers for simulations and
(RNG) Vision, CFD, Computational Chemistry, and Linear implicit unstructured methods

Optimization applications

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 22/25

Computer Vision Group

CuFFT NVIDIA Performance Primitives

GPU-accelerated library for Fast Fourier GPU-accelerated library for image and signal

Transforms processing
I
lopua [opuz -
NCCL NnvGRAPH

Collective Communications Library for scaling apps
across multiple GPUs and nodes

6PU-accelerated library for graph analytics

TensorRT

cuDNN

GPU-accelerated library of primitives for deep
neural networks

GPU-accelerated neural network inference library
for building deep learning applications

NVIDIA Codec SDK

High-performance APIs and tools for hardware
accelerated video encode and decode

Thrust

GPU-accelerated library of parallel algorithms and
data structures

Exm
| rvenc 8

Advanced GPU-accelerated video inference library

n Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

23/25

Computer Vision Group Tm

Technische Universitat Manchen

and much more!

4 FFmpeg {4} ArravFire

MAGMA

i

Sundog"
Software

https://developer.nvidia.com/gpu-accelerated-libraries
Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision

24125

https://developer.nvidia.com/gpu-accelerated-libraries

vt Computer Vision Group

Further Reading

CUDA Programming Guide (linked on course page)
m Appendix B.12 (atomics)
m Chapter 3, section 3.2.5 (streams & events)
m Appendix J (unified memory programming)

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 25/25

	Atomics
	Streams and Events
	Multi-GPU Programming
	Third-party Libraries

