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Communication Through Memory

Question:

1 __global__ void race()
2 {
3 __shared__ int my_shared_variable;
4 my_shared_variable = threadIdx.x;
5

6 // what is the value of my_shared_variable?
7 }
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Communication Through Memory

This is a race condition
The result is undefined
The order in which threads access the variable is
undefined without explicit coordination
Use atomic operations (e.g., atomicAdd) to enforce
well-defined semantics
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Atomics

Use atomic operations to ensure exclusive access to a
variable

1 // assume *p_result is initialized to 0
2 __global__ void sum(int *input, int *p_result)
3 {
4 atomicAdd(p_result, input[threadIdx.x]);
5

6 // after this kernel exits, the value of
7 // *p_result will be the sum of the inputs
8 }
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Atomics Imply Serialization

Atomic operations are costly!
They imply serialized access to a variable
⇒ use them only if there is no other better way to achieve
your task
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Atomics Imply Serialization

1 __global__ void sum(int *input, int *p_result)
2 {
3 atomicAdd(p_result, input[threadIdx.x]);
4 }
5

6 // how many threads will contend
7 // for exclusive access to p_result?
8 sum <<<10,128>>> (input,p_result);
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Atomics: Hierarchical Summation

Divide & Conquer:
__shared__ partial sums: atomicAdd per thread
global total sum: atomicAdd per block
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Atomics: Hierarchical Summation
1 __global__ void sum(int *input, int *result)
2 {
3 __shared__ int partial_sum;
4

5 // thread 0 is responsible for initializing partial_sum
6 if(threadIdx.x == 0) partial_sum = 0;
7 __syncthreads();
8

9 // each thread updates the partial sum
10 atomicAdd(&partial_sum, input[threadIdx.x]);
11 __syncthreads();
12

13 // thread 0 updates the total sum
14 if(threadIdx.x == 0) atomicAdd(result, partial_sum);
15 }
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Advice: Shared Memory and Atomics

Always use barriers such as __syncthreads(); to wait
until __shared__ data is ready
Prefer barriers to atomics when data access patterns are
regular or predictable
Prefer atomics to barriers when data access patterns are
sparse or unpredictable
Atomics to __shared__ variables are much faster than
atomics to global variables
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Disclaimer

I haven’t tried out most of what will follow myself
Proceed with caution ,
Check out the samples in the SDK and look up
documentation
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Streams

Concurrency is handled through streams
overlap kernel execution with another kernel execution
overlap kernel execution with a memcpy
overlap memcpy with another memcpy
wait for certains kernels, but not for others

Stream = sequence of commands executed in order
different streams may execute concurrently, but not
guaranteed
depends on hardware and the kind of operations executed
in the streams
default stream is 0: if no stream specified
so everything without an explicitly specified stream
executes in order
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Streams
1 cudaStream_t stream1; cudaStream_t stream2;
2 cudaStreamCreate(&stream1); cudaStreamCreate(&stream2);
3 float *h_ptr; cudaMallocHost(&h_ptr, size);
4
5 // (potentially) overlapping execution
6 cudaMemcpyAsync(h_ptr, d_ptr, size, dir, stream1);
7 kernel <<<grid,block,0,stream2>>> (...);
8
9 // check whether memcpy has finished
10 cudaError_t res = cudaStreamQuery(stream1);
11 if (res==cudaSuccess) { ... }
12
13 // or: wait for completion:
14 cudaStreamSynchronize(stream1); // will only wait for the memcpy
15 cudaStreamSynchronize(stream2); // will only wait for the kernel
16
17 cudaStreamDestroy(&stream1); cudaStreamDestroy(&stream2);
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Events

Monitor device’s progress
Asynchronously record events at any point in the program
Event recorded when all commands in stream completed

measure elapsed time for CUDA calls (clock cycle
precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed

1 cudaEvent_t start; cudaEvent_t stop;
2 cudaEventCreate(&start); cudaEventCreate(&stop);
3 cudaEventRecord(start,0); // default stream
4 kernel <<<grid,block>>> (...);
5 cudaEventRecord(stop,0); // default stream
6 cudaEventSynchronize(stop); // block until "stop" recorded
7 float t; cudaEventElapsedTime(&t, start, stop);
8 cudaEventDestroy(start); cudaEventDestroy(end);
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Multi-GPU Programming

There may be more than one GPU installed
Host can query and select GPU devices

cudaGetDeviceCount(int *count);
cudaSetDevice(int device);
cudaGetDevice(int *current_device);
cudaGetDeviceProperties(cudaDeviceProp *prop, int
device);

Multi-GPU setting: device 0 is used by default
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Multi-GPU Programming

cudaSetDevice(...) can be called at any time
Everything happens on the current device:

cudaMalloc(...) allocates on the cur. dev. only
cudaFree(...) frees memory of cur. dev.
Kernels execute only on the cur. dev.
cudaDeviceSynchronize() waits only for cur. dev.

GPUs are independent: kernels run in parallel

1 cudaSetDevice(0); mykernel1 <<<grid1,block1>>> (d0_a, n0_a);
2 cudaSetDevice(1); mykernel2 <<<grid2,block2>>> (d1_a, n1_a);
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Multi-GPU Programming

Data exchange between GPUs
cudaMemcpyPeer(ptr_to, dev_to, ptr_from,
dev_from, size);
From CC≥2.0: Direct access between GPUs
Kernel on device x can read memory on device y

memcopies are done automatically
utilizes unified virtual addressing
must be explicitly enabled:
cudaDeviceEnablePeerAccess(dev_peer, 0);
enables current device to access memory of dev_peer
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Outline

1 Atomics

2 Streams and Events

3 Multi-GPU Programming

4 Third-party Libraries
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Linear Algebra and Math Libraries
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Image Processing, Algorithms and Deep Learning
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... and much more!

https://developer.nvidia.com/gpu-accelerated-libraries
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Further Reading
CUDA Programming Guide (linked on course page)

Appendix B.12 (atomics)
Chapter 3, section 3.2.5 (streams & events)
Appendix J (unified memory programming)
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