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Communication Through Memory

m Question:

__global__ void race()

{
__shared__ int my_shared_variable;
my_shared_variable = threadldx.x;

// what is the value of my_shared_variable?
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Communication Through Memory

m This is a race condition
m The result is undefined

m The order in which threads access the variable is
undefined without explicit coordination

m Use atomic operations (e.g., atomicAdd) to enforce
well-defined semantics
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Atomics

m Use atomic operations to ensure exclusive access to a
variable

// assume *p_result is initialized to O
__global__ void sum(int *input, int *p_result)
{

atomicAdd(p_result, input[threadIdx.x]);

// after this kernel exits, the value of
// *p_result will be the sum of the inputs
}
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m Atomic operations are costly!

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7125



Computer Vision Group

Atomics Imply Serialization

m Atomic operations are costly!
m They imply serialized access to a variable

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 7125



Computer Vision Group

Atomics Imply Serialization

m Atomic operations are costly!
m They imply serialized access to a variable

m = use them only if there is no other better way to achieve
your task
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Atomics Imply Serialization

__global__ void sum(int *input, int *p_result)
{

atomicAdd(p_result, input[threadIdx.x]);
}

// how many threads will contend
// for exclusive access to p_result?
sum <<<10,128>>> (input,p_result);
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Atomics: Hierarchical Summation
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Divide & Conquer:
B __shared__ partial sums: atomicAdd per thread
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Atomics: Hierarchical Summation
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Divide & Conquer:
m __shared__ partial sums: atomicAdd per thread
m global total sum: atomicAdd per block
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Atomics: Hierarchical Summation

__global__ void sum(int *input, int *result)
{

__shared__ int partial_sum;

1
2
3
4
5 // thread 0 is responsible for initializing partial_sum
6 if (threadIdx.x == 0) partial_sum = O;

7 __syncthreads();

8

9 // each thread updates the partial sum

10 atomicAdd(&partial_sum, input[threadIldx.x]);

1 __syncthreads();

13 // thread 0 updates the total sum
14 if (threadIdx.x == 0) atomicAdd(result, partial_sum);
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Advice: Shared Memory and Atomics

m Always use barriers such as __syncthreads () ; to wait
until __shared__ data is ready
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Advice: Shared Memory and Atomics

m Always use barriers such as __syncthreads() ; to wait
until __shared__ data is ready

m Prefer barriers to atomics when data access patterns are
regular or predictable

m Prefer atomics to barriers when data access patterns are
sparse or unpredictable

m Atomics to __shared__ variables are much faster than
atomics to global variables
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Disclaimer

m | haven't tried out most of what will follow myself
m Proceed with caution ©

m Check out the samples in the SDK and look up
documentation
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Streams

m Concurrency is handled through streams

m overlap kernel execution with another kernel execution
m overlap kernel execution with a memcpy

m overlap memcpy with another memcpy

m wait for certains kernels, but not for others

B Stream = sequence of commands executed in order

m different streams may execute concurrently, but not
guaranteed

m depends on hardware and the kind of operations executed
in the streams

B default streamis O: if no stream specified

m so everything without an explicitly specified stream
executes in order
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Streams

1  cudaStream_t streaml; cudaStream_t stream?2;

2 cudaStreamCreate(&streaml); cudaStreamCreate(&stream2);

3 float *h_ptr; cudaMallocHost(&h_ptr, size);

4

5 // (potentially) overlapping execution

6 cudaMemcpyAsync(h_ptr, d_ptr, size, dir, streaml);

7 kernel <<<grid,block,0,stream2>>> (...);

8

9 // check whether memcpy has finished

10 cudaError_t res = cudaStreamQuery(streaml);

11 if (res==cudaSuccess) { ... }

12

13 // or: wait for completion:

14 cudaStreamSynchronize(streaml); // will only wait for the memcpy
15 cudaStreamSynchronize(stream2); // will only wait for the kernel
16

17 cudaStreamDestroy(&streaml); cudaStreamDestroy(&stream2);
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Events

m Monitor device’s progress

m Asynchronously record events at any point in the program
m Event recorded when all commands in stream completed

m measure elapsed time for CUDA calls (clock cycle
precision)

m query the status of an asynchronous CUDA call

m block CPU until CUDA calls prior to the event are completed

cudaEvent_t start; cudaEvent_t stop;

cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start,0); // default stream
kernel <<<grid,block>>> (...);
cudaEventRecord(stop,0) ; // default stream

cudaEventSynchronize(stop); // block until "stop" recorded
float t; cudaEventElapsedTime(&t, start, stop);
cudaEventDestroy(start); cudaEventDestroy(end);
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Multi-GPU Programming

m There may be more than one GPU installed
m Host can query and select GPU devices
B cudaGetDeviceCount (int *count);
B cudaSetDevice(int device);
B cudaGetDevice(int *current_device);
B cudaGetDeviceProperties(cudaDeviceProp *prop, int
device);

m Multi-GPU setting: device 0 is used by default

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:
B cudaMalloc(...) allocates on the cur. dev. only

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.
m Kernels execute only on the cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:
B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.
m Kernels execute only on the cur. dev.
®m cudaDeviceSynchronize() waits only for cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:
B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.
m Kernels execute only on the cur. dev.
®m cudaDeviceSynchronize() waits only for cur. dev.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 19/25



Computer Vision Group

Multi-GPU Programming

B cudaSetDevice(...) can be called at any time
m Everything happens on the current device:

B cudaMalloc(...) allocates on the cur. dev. only
B cudaFree(...) frees memory of cur. dev.

m Kernels execute only on the cur. dev.

®m cudaDeviceSynchronize() waits only for cur. dev.

m GPUs are independent: kernels run in parallel

1 cudaSetDevice(0); mykernell <<<gridil,blocki1>>> (dO_a, n0_a);
2 cudaSetDevice(1); mykernel2 <<<grid2,block2>>> (dl_a, nl_a);
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Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);
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Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

m Kernel on device x can read memory on device y

B memcopies are done automatically

m utilizes unified virtual addressing

m must be explicitly enabled:

B cudaDeviceEnablePeerAccess(dev_peer, 0);
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Multi-GPU Programming

m Data exchange between GPUs
cudaMemcpyPeer (ptr_to, dev_to, ptr_from,
dev_from, size);

m From CC>2.0: Direct access between GPUs

m Kernel on device x can read memory on device y

memcopies are done automatically

utilizes unified virtual addressing

must be explicitly enabled:
cudaDeviceEnablePeerAccess(dev_peer, 0);
enables current device to access memory of dev_peer
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Linear Algebra and Math Libraries

=

cuBLAS CUDA Math Library cuSPARSE
GPU-accelerated standard BLAS library GPU-accelerated standard mathematical function GPU-accelerated BLAS for sparse matrices
library

cuRAND cuSOLVER AmgX
GPU-accelerated random number generation Dense and sparse direct solvers for Computer GPU accelerated linear solvers for simulations and
(RNG) Vision, CFD, Computational Chemistry, and Linear implicit unstructured methods

Optimization applications
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CuFFT NVIDIA Performance Primitives

GPU-accelerated library for Fast Fourier GPU-accelerated library for image and signal

Transforms processing
I
lopua [opuz -
NCCL NnvGRAPH

Collective Communications Library for scaling apps
across multiple GPUs and nodes

6PU-accelerated library for graph analytics

TensorRT

cuDNN

GPU-accelerated library of primitives for deep
neural networks

GPU-accelerated neural network inference library
for building deep learning applications

NVIDIA Codec SDK

High-performance APIs and tools for hardware
accelerated video encode and decode

Thrust

GPU-accelerated library of parallel algorithms and
data structures

Exm
| rvenc 8

Advanced GPU-accelerated video inference library

n Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision
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and much more!

4 FFmpeg {4} ArravFire

MAGMA

i

Sundog"
Software

https://developer.nvidia.com/gpu-accelerated-libraries
Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision
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Further Reading

CUDA Programming Guide (linked on course page)
m Appendix B.12 (atomics)
m Chapter 3, section 3.2.5 (streams & events)
m Appendix J (unified memory programming)
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