
GPU Programming in Computer Vision: Day 1

Date: September 17, 2018

Setup and Code Framework
Include the path to the nvcc Compiler:
Open the .bashrc script: gedit ~/.bashrc
Add at the end of the file: export PATH=/usr/local/cuda-9.1/bin:$PATH
Reload to apply the changes: source ~/.bashrc

In your home directory, execute:
git clone https://svncvpr.in.tum.de/git/cuda_ss18

The framework shows how to use OpenCV to load/save/display images, access the camera,
measure the runtime, and process the command line parameters.
Create a directory to build: mkdir build
Change into the directory: cd build
Generate the Makefile: cmake ..
Compile: make
Run executable for exercise, e.g.: ./bin/ex3_gamma -i ../images/dog.png

A complete framework for all exercises is already provided, in which you should insert the
missing code for each exercise. Parts to be completed are indicated by // TODO comments.

General Code Requirements for the Exercises
• Keep your code as general as possible. It must be applicable for images with an arbitrary
number of channels nc (if not stated otherwise).

• Always comment your code.

• Whenever new parameters are introduced, use the cv::CommandLineParser to read in
these parameters from command line arguments.

• Always include code for measuring run times and test how much time your overall
computation for the exercise takes.

• When finished, test on several still images. If you want, also test on live webcam stream.

• Always use the macro CUDA_CHECK after each CUDA call, e.g.
cudaMalloc(...); CUDA_CHECK;

• Hint: Multi-channel images are layered: access imgIn(x, y, channel c) as
imgIn[x + (size_t)w*y + (size_t)w*h*c]

• Always use a variable (of type size_t) for an index which you need more than once, e.g.
size_t ind = x + (size_t)w*y + (size_t)w*h*c;

• Always cast to size_t in integer products when computing array indices or image sizes

1

Exercise 1: Check CUDA and the installed GPU (1P)
1. Open a terminal and check whether CUDA is installed: nvcc --version. Which version

is installed?

2. Go to the “CUDA samples” folder1 and run deviceQuery. Find out the following:

(a) name of the installed GPU and its compute capability (“CUDA Capability”)
(b) number of multiprocessors and CUDA cores
(c) amount of global memory
(d) max. amount of registers and shared memory per block

Exercise 2: First CUDA Kernels (3P)
Implement the following CUDA kernels:

1. In basic/squareArray.cu, complete the CUDA code for squaring an array on the GPU.
Implement the square operation as a __device__ function. Compile with
nvcc -o squareArray squareArray.cu

2. In basic/addArrays.cu, complete the CUDA code for adding two arrays on the GPU.
Implement the addition operation as a __device__ function.

3. Now, compile both files with (similarly for addArrays):
nvcc -o squareArray squareArray.cu --ptxas-options=-v
How many registers are used by your kernels?

Exercise 3: Gamma Correction (4P)
Perform gamma correction on the colors of the input image: uout

c (x, y) = uc(x, y)γ , γ > 0 for
each pixel (x, y) ∈ Ω and for each channel c ∈ {1, . . . , nc}.

1. Write the CPU version. Keep your code general, so that it can process grayscale (nc = 1)
as well as color images (nc = 3). Test on several input images, with and without the -b
parameter for grayscale. Then test on live webcam images (just don’t provide an input
image).

2. Write the GPU version. Test on still images and on the webcam stream.

3. Compare the CPU and GPU run times on still images. Average the run times over
repeats≥ 1 repetitions and experiment with different values of repeats. For the GPU
version, first measure all operations, and then only the kernel executions excluding
alloc/free/memcpy. What do you observe?

4. Experiment with several different block sizes for the kernel launch, starting with (32, 8, 1).
Make sure that the overall number of threads per block is a multiple of 32. For which
block size is the run time minimal?

1/work/sdks/cudacurrent/samples/1_Utilities/deviceQuery

2

Exercise 4: Linear Operators (4P)
Write code for computing the gradient of an image and the divergence of a vector field.
Combine both kernels to compute the pixelwise norm of the Laplacian ∆u = div(∇u):

||∆u(x, y)||2 =

√√√√ nc∑
c=1

∆uc(x, y)2

Write only a GPU version. As usual, write your code for a general nc. Implement this in
several steps:

1. Write a kernel which computes the gradient v1 := ∂+
x u and v2 := ∂+

y u given an input
image u. The images v1 and v2 have the same number of channels as u, and ∂+

x and ∂+
y

are applied channelwise.

2. Write another kernel which computes the divergence w := ∂−x v1 +∂−y v2 of a given vector
field v. The image w has the same number of channels as v1 and v2. The operators ∂−x
and ∂−y are applied channelwise.

3. Write a third kernel which calculates at each pixel (x, y) the `2-norm across the color
channels:

‖u(x, y)‖2 =

√√√√ nc∑
c=1

uc(x, y)2.

4. Finally combine all three kernels to compute the absolute value of the Laplacian. Visu-
alize the result.

Exercise 5: Convolution (6P)
Implement the convolution Gσ ∗ u of an input image u with a Gaussian kernel Gσ.
Use GPU global memory for everything.

1. Compute the kernel k := Gσ on the CPU. Normalize so that the values sum up to 1.
For a general variance σ > 0 set the kernel window radius to r := ceil(3×σ) (i.e. round
up).

2. Visualize the kernel using OpenCV. For visualization, define a copy k′ which is equal to
the kernel k but is scaled so that the maximum value is 1. Note that the kernel can be
visualized as a grayscale image with width = height = 2r + 1.

3. Compute the convolution k ∗ u on the CPU. The convolution is done channelwise on u.
When the convolution requires values of u in pixels outside of the image domain, use
clamping. Visualize the result.

4. Copy the kernel k computed in step 1 from the CPU to the GPU memory. Compute
the convolution k ∗ u on the GPU. Use a single kernel execution to process all channels.
Visualize the result.

5. Experiment with different values of σ on still images, compare the run times.

6. Test on webcam images.

3

