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Computer Vision Group

Variational methods

Energy minimization

An established approach to model numerous computer vision problems.

Energy

Every possible candidate solution u is assigned an energy E(u).
Idea: E(u) measures the costs of u: The smaller the costs the better the

solution.

Minimizers

Candidates u with least energy are considered solutions to the problem.

Advantages:

Clear mathematical correspondence between input data and result

Extensive mathematical theory, optimality conditions

Can describe sophisticated problems with only a few parameters

Lots of algorithms to compute the minimizers
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Computer Vision Group

Variational Methods

Typical form

E(u) = D(u) + R(u)

Data term D(u) measures how well the solution u fits input data.

Regularizer R(u) enforces regularity and smoothness of u.

Minimizing E will give a solution u which fits to the inputs and is smooth!
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Computer Vision Group

Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.
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Computer Vision Group

Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel
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Computer Vision Group

Example: Optical flow

Input: a pair of images. Find: displacement vector for each pixel
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Computer Vision Group

Example: Image Deblurring

Input: a blurry image. Find: a deblurred image.
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Computer Vision Group

Example: Segmentation

Input: a color image. Find: object with certain given characteristics (colors

distribution etc.).
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Computer Vision Group

Example: Multilabel Segmentation

Input: a color image. Find: a meaningful decomposition into several regions.
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Computer Vision Group

Image Denoising: The Problem

Input: a noisy image f : Ω → Rn. Find: denoised u : Ω → Rn.
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Outline

1 Variational methods

2 Image denoising

3 Energy Minimization
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Computer Vision Group

Image Denoising: Energy

Data term

The clean image u must be similar to the noisy image f :

D(u) :=

∫
Ω

(
u(x, y)− f (x, y)

)2
dx dy

Minimize D(u) to guarantee that u ≈ f .

Regularizer

Solution u must be noise-free, so we look for smooth images u.

Colors in neighboring pixels must be similar, i.e. |∇u| must be small:

R(u) := λ

∫
Ω

φ
(
|(∇u)(x, y)|

)
dx dy.

φ : R → R is an increasing function, λ > 0 is a weighting parameter.

Minimize R(u) to guarantee that |∇u| is small, and u noise-free.
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Computer Vision Group

Image Denoising: Energy

Denoising energy

E(u) =

∫
Ω

( (
u(x, y)− f (x, y)

)2︸ ︷︷ ︸
D(u)

+ λφ
(
|(∇u)(x, y)|

)
︸ ︷︷ ︸

R(u)

)
dx dy

If u = f :

Perfect fit for data: D(u) = 0. But u noisy: R(u) � 1.

If u = const:

Bad fit for data: D(u) � 1. But u smooth: R(u) = 0.

True solution

Will be a trade-off between data fitting and smoothness.

λ controls the desired degree of smoothness of u.
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1 Variational methods

2 Image denoising
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Computer Vision Group

Energy Minimization: Methods

Denoising Energy

E(u) =

∫
Ω

((
u(x, y)− f (x, y)

)2
+ λφ

(
|(∇u)(x, y)|

) )
dx dy

How to find the minimizer u in practice?

There are many methods. The most common ones are:

1 Gradient descent: Go along the negative “gradient” of the energy.

2 Euler-Lagrange equation: Necessary condition for the minimizers.

3 Primal-dual methods: Very flexible iterative algorithms.
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Computer Vision Group

Gradient Descent: Gradient of the Energy

Intuitively: (∇E)(u) is the gradient w.r.t. values u(x, y) at each (x, y).
Analogy with finite e : Rk → R:

For z ∈ Rk : (∇e)(z) has (dimRk)-many components.

If the position z is changed slightly to z + h,

then (∇e)(z) describes the rate of the change of e:

e(z + h) ≈ e(z) +

k∑
i=1

(
(∇e)(z)

)
i
· hi

Therefore:

For u : Ω → R: (∇E)(u) has (dim
{
û : Ω → R

}
)-many components.

So (∇E)(u) is a function (∇E)(u) : Ω → R.
If the image u is changed slightly in each pixel to u(x, y) + h(x, y), then
(∇E)(u) describes the rate of the change of E:

E(u+ h) ≈ E(u) +

∫
Ω

(
(∇E)(u)

)
(x, y) · h(x, y) dx dy

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 18 / 28
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Computer Vision Group

Gradient Descent: Update Equation

Idea

The gradient is the direction of steepest increase of E.

The negative gradient is the direction is steepest descent.

Gradient descent equation

∂tu = −(∇E)(u)

So, having computed some candidate u with energy E(u), we can construct a

better candidate unew with a potentially lower energy E(unew):

(unew)(x, y) = u(x, y) + τ
(
− (∇E(u))(x, y)

)
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Computer Vision Group

Gradient Descent: Image Denoising

Denoising energy

E(u) =

∫
Ω

((
u(x, y)− f (x, y)

)2
+ λφ

(
|(∇u)(x, y)|

) )
dx dy

Functional derivative

(∇E)(u) = 2(u− f )− λdiv
(
φ′(|∇u|

)
|∇u| ∇u

)
Gradient descent equation

∂tu = −(∇E)(u) = 2(f − u) + λdiv
(
φ′(|∇u|

)
|∇u| ∇u

)
Observe:

The structure of the equation is the same as for diffusion with diffusivity

g := λ φ′(|∇u|)
|∇u| , but with an additional term 2(f − u).
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(
φ′(|∇u|

)
|∇u| ∇u

)
Observe:

The structure of the equation is the same as for diffusion with diffusivity

g := λ φ′(|∇u|)
|∇u| , but with an additional term 2(f − u).
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Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set φ(s) := 1
2
s2.

Denoising energy

E(u) =

∫
Ω

((
u(x, y)− f (x, y)

)2
+ λ

2
|(∇u)(x, y)|2

)
dx dy

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation

We have
φ′(s)

s
= 1, therefore

∂tu = 2(f − u) + λ∆u
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Gradient Descent: Huber Regularizer Example

Huber regularizer: Set φ(s) := hε(s) :=

{
s2

2ε
if s < ε

s− ε
2

else

}
.

Denoising energy

E(u) =

∫
Ω

((
u(x, y)− f (x, y)

)2
+ λhε

(
|(∇u)(x, y)|

))
dx dy

This regularizer only smooths in flat regions, edges are well preserved.

Gradient descent equation

We have
φ′(s)

s
= 1

max(ε,s) , therefore

∂tu = 2(f − u) + λ div
(

1
max(ε,|∇u|)∇u

)
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Computer Vision Group

Euler-Lagrange Equation

Idea

Setting the gradient to zero, i.e. considering (∇E)(u) = 0, yields a necessary

optimality condition for the minimizers u.

Euler-Lagrange equation

2(u− f )− λ div
(
φ′(|∇u|

)
|∇u| ∇u

)
= 0

For convex energies:

Any image u fulfilling the equation is a minimizer of the energy.

Solving:

discretize

apply fixed-point iteration
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Computer Vision Group

Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := ĝ
(
|∇+u|

)
, ĝ(s) := φ′(s)

s
.

Forward differences for ∇, backward differences for div:

2(u− f )− λdiv− (
g∇+

u
)
= 0.

Fully written out, this is

2(u− f )− λ

(
gr u(x + 1, y) + gl u(x − 1, y)

+ gu u(x, y + 1) + gd u(x, y − 1)

− (gr + gl + gu + gd) u(x, y)

)
= 0

with

gr := 1x+1<W · g(x, y), gl := 1x>0 · g(x − 1, y),

gu := 1y+1<H · g(x, y), gd := 1y>0 · g(x, y − 1).

This is a nonlinear equations system. Use a fixed point iteration scheme.

Björn Häfner, Robert Maier, David Schubert : GPU Programming in Computer Vision 24 / 28



Computer Vision Group

Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := ĝ
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Computer Vision Group

Euler-Lagrange Equation: Fixed-Point Iteration

1 Start with an image u0.

2 Compute the diffusivity g = ĝ
(
|∇+uk |

)
at the current iterate uk .

Compute gr , gl , gu, gd in each pixel (see previous slide).

3 Solve the following linear system for uk+1: for all (x, y) ∈ Ω,(
2 + λ(gr + gl + gu + gd)

)
u
k+1(x, y)

− λ gr u
k+1(x + 1, y)− λ gl u

k+1(x − 1, y)

− λ gu u
k+1(x, y + 1)− λ gd u

k+1(x, y − 1) = 2f (x, y).

4 Iterate until convergence.
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Linear Equation Systems: Jacobi Method

Jacobi Method

To solve Az = b: split A = D+ R with diagonal D and off-diagonal R:

D =


a11 0 · · · 0

0 a22

...
...

. . . 0
0 . . . 0 ann

, R =


0 a12 · · · a1n

a21 0
...

...
. . . an−1,n

an1 . . . an,n−1 0


(D+ R)z = b, so z = D−1(b− Rz). One iteration leads to the update:

z
k+1
i =

1

aii

(
bi −

∑
j 6=i

aijz
k
j

)
Update for the Euler-Lagrange equation

u
k+1(x, y) = 2f(x,y)+λ gru

k(x+1,y) +λ glu
k(x−1,y)+λ guu

k(x,y+1)+λ gdu
k(x,y−1)

2+λ (gr+gl+gu+gd)
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Computer Vision Group

Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method

Split A = L∗ + U, with L∗ lower triangular and U upper triangular:

L∗ =


a11 0 · · · 0

a21 a22

...
...

. . . 0
an1 . . . an,n−1 ann

, U =


0 a12 · · · a1n

0 0
...

...
. . . an−1,n

0 . . . 0 0


(L∗ + U)z = b, so z = L−1

∗ (b− Ux). One iteration leads to the update:

z
k+1
i =

1

aii

(
bi −

∑
j>i

aijz
k
j −

∑
j<i

aijz
k+1
j

)
This is exactly the Jacobi update, but with new values zk+1 if available.

Red-black scheme

To parallelize the Gauss-Seidel update: First: update only at pixels (x, y) with
(x + y)%2 = 0. Then: only with (x + y)%2 = 1.
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Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)

Accelerates the Gauss-Seidel method by linear extrapolation.

SOR update step

Let z̄k+1 be the result of one Gauss-Seidel iteration applied to zk .

Compute

z
k+1 = z̄

k+1 + θ(z̄k+1 − z
k)

where θ ∈ [0, 1) is a fixed parameter.

Convergence

SOR converges for any θ ∈ [0, 1). The optimal θ depends on A.

In practice, one uses values near 1, typically 0.5–0.9, or 0.9–0.98.
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