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Energy minimization
An established approach to model numerous computer vision problems.
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Variational methods

Energy minimization
An established approach to model numerous computer vision problems.

Energy

Every possible candidate solution u is assigned an energy E(u).

Idea: E(u) measures the costs of u: The smaller the costs the better the
solution.

Minimizers
Candidates u with least energy are considered solutions to the problem.

Advantages:
m Clear mathematical correspondence between input data and result
m Extensive mathematical theory, optimality conditions
m Can describe sophisticated problems with only a few parameters
m Lots of algorithms to compute the minimizers
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Variational Methods
Typical form
E(u) =D(u) + R(u)

m Data term D(u) measures how well the solution u fits input data.
m Regularizer R(u) enforces regularity and smoothness of u.
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Variational Methods
Typical form
E(u) =D(u) + R(u)

m Data term D(u) measures how well the solution u fits input data.
m Regularizer R(u) enforces regularity and smoothness of u.

Minimizing E will give a solution u which fits to the inputs and is smooth!
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Example: 3D reconstruction

Input: views of an object from different cameras. Find: the 3D-object.

e
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Example: Depth reconstruction

Input: a pair of stereo images. Find: the depth in every pixel
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Example: Optical flow

Input: a pair of images. Find: displacement vector for each pixel

[ 2
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Example: Image Deblurring

Input: a blurry image. Find: a deblurred image.

Original blurred and noisy deblurred
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Example: Segmentation

Input: a color image. Find: object with certain given characteristics (colors
distribution etc.).
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Example: Multilabel Segmentation

Input: a color image. Find: a meaningful decomposition into several regions.
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Image Denoising: The Problem

Input: a noisy image f : Q — R". Find: denoised u: Q — R".

Solution
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Image Denoising: Energy

Data term

m The clean image u must be similar to the noisy image f:

D(u) := /Q (u(x,y) — f(x,y))2 dx dy
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m Minimize D(u) to guarantee that u ~ f.
Regularizer
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Data term

m The clean image u must be similar to the noisy image f:

D(u) := /Q (u(x,y) — f(x,y))2 dx dy

m Minimize D(u) to guarantee that u ~ f.
Regularizer

m Solution u must be noise-free, so we look for smooth images u.
m Colors in neighboring pixels must be similar, i.e. |Vu| must be small:

R@w) = A [ o(I(Vu)(x.)1) dcay.
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Image Denoising: Energy

Data term

m The clean image u must be similar to the noisy image f:

D(u) := /Q (u(x,y) — f(x,y))2 dx dy

®m Minimize D(u) to guarantee that u ~ f.
Regularizer

m Solution u must be noise-free, so we look for smooth images u.
m Colors in neighboring pixels must be similar, i.e. |Vu| must be small:

R(u) =\ / o(1(Vu)(x.)1) dxcy.

B ¢ : R — Ris an increasing function, A > 0 is a weighting parameter.
m Minimize R(u) to guarantee that |Vu| is small, and u noise-free.
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Image Denoising: Energy
Denoising energy
E(u):/Q ( (ulx,y) = F06)* + 20 (1(Vu)(x,)]) > dx dy

— —_—
b R(u)

Iifu=f:
Perfect fit for data: D(u) = 0. But u noisy: R(u) > 1.
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Image Denoising: Energy
Denoising energy
E(u):/Q ( (ulx,y) = F06)* + 20 (1(Vu)(x,)]) > dx dy

— —_—
b R(u)

Iifu=f:
Perfect fit for data: D(u) = 0. But u noisy: R(u) > 1.

If u = const:
Bad fit for data: D(u) > 1. But u smooth: R(u) = 0.

True solution
Will be a trade-off between data fitting and smoothness.
) controls the desired degree of smoothness of u.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 15/28



Camputer Vision Group Tm

Technische Universitat Minchen

Outline

Energy Minimization

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 16/28



Camputer Vision Group

Energy Minimization: Methods

Denoising Energy

E@ = [ ((utxy) = 1) + xo(I(Tucp)) ) dray

How to find the minimizer u in practice?
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Energy Minimization: Methods

Denoising Energy

E@ = [ ((utxy) = 1) + xo(I(Tucp)) ) dray

How to find the minimizer u in practice?

There are many methods. The most common ones are:
Gradient descent: Go along the negative “gradient” of the energy.
Euler-Lagrange equation: Necessary condition for the minimizers.
Primal-dual methods: Very flexible iterative algorithms.
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Gradient Descent: Gradient of the Energy

Intuitively: (VE)(u) is the gradient w.r.t. values u(x, y) at each (x, y).
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Intuitively: (VE)(u) is the gradient w.r.t. values u(x, y) at each (x, y).
Analogy with finite e : R¥ — R:
m For z € R*: (Ve)(z) has (dim R¥)-many components.
m If the position z is changed slightly to z + h,
then (Ve)(z) describes the rate of the change of e:

k

ez +h) ~e@) +> ((Ve)@),-h

i=1
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m If the position z is changed slightly to z + h,
then (Ve)(z) describes the rate of the change of e:

k

ez +h) ~e@) +> ((Ve)@),-h

i=1
Therefore:

® Foru:Q — R: (VE)(u) has (dim {& : © — R})-many components.
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Gradient Descent: Gradient of the Energy

Intuitively: (VE)(u) is the gradient w.r.t. values u(x, y) at each (x, y).
Analogy with finite e : R¥ — R:
m For z € R*: (Ve)(z) has (dim R¥)-many components.
m If the position z is changed slightly to z + h,
then (Ve)(z) describes the rate of the change of e:

k

e(z+h)~e(2)+Y_ ((Ve)(2), h

i=1
Therefore:

® Foru:Q — R: (VE)(u) has (dim {& : © — R})-many components.
So (VE)(u) is a function (VE)(u) : © — R.

m If the image v is changed slightly in each pixel to u(x, y) + h(x, y), then
(VE)(u) describes the rate of the change of E:

E(u+h) ~ E(u) —i—/g ((VE)(u))(x,y) - h(x,y) dx dy
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Gradient Descent: Update Equation

Idea

m The gradient is the direction of steepest increase of E.
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Gradient Descent: Update Equation

Idea

m The gradient is the direction of steepest increase of E.
m The negative gradient is the direction is steepest descent.

Gradient descent equation

du = —(VE)(u)

So, having computed some candidate u with energy E(u), we can construct a
better candidate unew With a potentially lower energy E (Unew):

(tnew)(x,y) = u(x,¥) + 7 (= (VE))(x,5))
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Gradient Descent: Image Denoising

Denoising energy

E@ = [ ((utxy) = 1) + xo(I(Tucp)) ) dray
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Gradient Descent: Image Denoising

Denoising energy
E@ = [ ((utxy) = 1) + xo(I(Tucp)) ) dray
Q
Functional derivative

(VE)(u) = 2(u — ) — Adiv <%W>
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Gradient Descent: Image Denoising

Denoising energy
E@ = [ ((utxy) = 1) + xo(I(Tucp)) ) dray
Q
Functional derivative

(VE)(u) = 2(u — ) — Adiv (%VO

Gradient descent equation

O = —(VE)(u) = 2(f — u) + Adiv (%VU)
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Gradient Descent: Image Denoising

Denoising energy
E@ = [ ((utxy) = 1) + xo(I(Tucp)) ) dray
Q
Functional derivative

(VE)() = 2(u — f) — Adiv (%w

Gradient descent equation

O = —(VE)(u) = 2(f — u) + Adiv (%VU)

Observe:

m The structure of the equation is the same as for diffusion with diffusivity

g:=A %, but with an additional term 2(f — u).
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Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set ¢(s) := 1s°.
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Gradient Descent: Quadratic Regularizer Example

2

Quadratic regularizer: Set ¢(s) := 5s~.

1
2

Denoising energy

Ew - [ ((u(w) ) + 2(Tu)(x, y>|2) ax dy

Using this regularizer leads to oversmoothing, solutions are too blurry.
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Gradient Descent: Quadratic Regularizer Example

Quadratic regularizer: Set ¢(s) := 1s°.

Denoising energy

Ew - [ ((u(w) ) + 2(Tu)(x, y>|2) ax dy

Using this regularizer leads to oversmoothing, solutions are too blurry.

Gradient descent equation
We have ¢ = 1, therefore

Ou=2(f —u)+ \Au
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Gradient Descent: Huber Regularizer Example

5 .
Huber regularizer: Set ¢(s) := h.(s) := ¢ > _ Ifs<e .
s— 5 else
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Gradient Descent: Huber Regularizer Example

5 .
Huber regularizer: Set ¢(s) := h.(s) := ¢ > _ Ifs<e .
s— 5 else

Denoising energy

Ew- [ ((u(w) fxy) + Aha(|<w><x,y>|)) dx dy

This regularizer only smooths in flat regions, edges are well preserved.
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Gradient Descent: Huber Regularizer Example

5 .
Huber regularizer: Set ¢(s) := h.(s) := ¢ > _ Ifs<e .
s— 5 else

Denoising energy
E(u) = / ((u(x,y) —f(x, ) + )\hg(|(Vu)(x,y)|)> dx dy
Q
This regularizer only smooths in flat regions, edges are well preserved.

Gradient descent equation
We have £ = L therefore

s max(e,s)’

o = 2(f — u) + Adiv (mw)
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Euler-Lagrange Equation

Idea
Setting the gradient to zero, i.e. considering (VE)(u) = 0, yields a necessary
optimality condition for the minimizers u.
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Euler-Lagrange Equation

Idea
Setting the gradient to zero, i.e. considering (VE)(u) = 0, yields a necessary
optimality condition for the minimizers u.

Euler-Lagrange equation

2(u—f) — Adiv (%VU) =0

For convex energies:
Any image u fulfilling the equation is a minimizer of the energy.
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Idea
Setting the gradient to zero, i.e. considering (VE)(u) = 0, yields a necessary
optimality condition for the minimizers u.

Euler-Lagrange equation
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For convex energies:
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Euler-Lagrange Equation

Idea
Setting the gradient to zero, i.e. considering (VE)(u) = 0, yields a necessary
optimality condition for the minimizers u.

Euler-Lagrange equation

2(u—f) — Adiv (%VU) =0

For convex energies:
Any image u fulfilling the equation is a minimizer of the energy.

Solving:
m discretize
m apply fixed-point iteration
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Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := g(|V*ul), g(s) := “’,s(S).
Forward differences for V, backward differences for div:

2(u—f) = Adiv™ (gV'u) =o0.
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Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := g(|V*ul), g(s) := “’,s(s).
Forward differences for V, backward differences for div:

2(u—f) = Adiv™ (gV'u) =o0.

Fully written out, this is

2(u—r1) —A( grulx+1y)+gux—1y)
+guu(x,y +1)+ggu(x,y — 1)
—(gr+ 9+ 9u+9ga) u(x,y) > =0
with
gr = Lxp1cw - g(X, ), g :=1Lxso0-g(x —1,y),
Gu:=Lyy1<n - 9(X,Y), ga:=1y>0-g(x,y = 1).
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Euler-Lagrange Equation: Discretization

Forward differences for the diffusivity g := g(|V*ul), g(s) := cAON
Forward differences for V, backward differences for div:

2(u—f) = Adiv™ (gV'u) =o0.

Fully written out, this is

2(u—f)—)\< grux+1,y)+gulx—1,y)
+ouu(x,y+1)+gau(x,y — 1)

—(gr+ 9+ 9u+9ga) u(x,y) > =0
with

gr = Lxp1cw - g(X, ), g :=1Lxso0-g(x —1,y),
9u = 1ypicn - 9(X, ), 9o = 1y>0 - gx,y — 1).

This is a nonlinear equations system. Use a fixed point iteration scheme.
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Euler-Lagrange Equation: Fixed-Point Iteration

Start with an image u°.
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Euler-Lagrange Equation: Fixed-Point Iteration

Start with an image u°.

Compute the diffusivity g = g(|V*u|) at the current iterate u*.
Compute gr, g1, 9u, ga in each pixel (see previous slide).
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Euler-Lagrange Equation: Fixed-Point Iteration

Start with an image u°.

Compute the diffusivity g = g(|V*u|) at the current iterate u*.
Compute gr, g1, 9u, ga in each pixel (see previous slide).

Solve the following linear system for u**1: for all (x,y) € Q,

(24 7@ +91+ 90+ 90)) U (x,9)
k+1(x_ 17y)
gy —1) = 2f(x, ).

k+l(

—Agru T (x+1,y)—Agiu

—“AguUT (X, y +1) — Aggu
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Euler-Lagrange Equation: Fixed-Point Iteration

Start with an image u°.

Compute the diffusivity g = g(|V*u|) at the current iterate u*.
Compute gr, g1, 9u, ga in each pixel (see previous slide).

Solve the following linear system for u**1: for all (x,y) € Q,

(24 7@ +91+ 90+ 90)) U (x,9)
k+1(x_ 17y)
gy —1) = 2f(x, ).

k+l(

—Agru T (x+1,y)—Agiu

—“AguUT (X, y +1) — Aggu

Iterate until convergence.
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Linear Equation Systems: Jacobi Method

Jacobi Method
To solve Az = b: split A= D + R with diagonal D and off-diagonal R:

aan 0 -~ 0 0 a2 - ain
D= 0 as2 7 R— a1 0
: .0 : . ap_in
0 . 0 ann an1 e an,n—1 0
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Linear Equation Systems: Jacobi Method

Jacobi Method
To solve Az = b: split A= D + R with diagonal D and off-diagonal R:

aan 0 -~ 0 0 a2 - ain
D— 0 a2 R= a1 0
: 0 : . ap_in
0 . 0 ann an1 e an,n—1 0

(D+ R)z = b,soz= D"'(b— Rz). One iteration leads to the update:

P 1 K
Z,-+1 = f(b,' — Za,-,-z,-)
ai J#
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Linear Equation Systems: Jacobi Method

Jacobi Method
To solve Az = b: split A= D + R with diagonal D and off-diagonal R:

aan 0 -~ 0 0 axp - ain
D— 0 a2 R= a1 0
: 0 : . ap_in
0 . 0 ann an1 e an,n—1 0

(D+ R)z = b,soz= D"'(b— Rz). One iteration leads to the update:
kv1 _ Lo Lk
Z; = a—ﬁ(b,—;a,,z,-)

Update for the Euler-Lagrange equation

X, y) = 2N FAGEOELY) A0 (G 1y) + A uth Gy 1) + A gt oy —1)
’ 2+ A (9r+91+9u+9q)

uk+1(
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Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A = L. + U, with L, lower triangular and U upper triangular:

ain 0 e 0 0 a2 --- ain
a a 0 0
L. = 21 @22 U=
. . 0 : - @np-1,n
@ ... @nn-1 @m o ... O 0
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Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A = L. + U, with L, lower triangular and U upper triangular:

ain 0 e 0 0 a2 --- ain
a a : 0 0
L. = 21 @22 U=
. . 0 : - @np-1,n
@ ... @nn-1 @m o ... O 0

(L. +U)z = b, s0 z = L' (b — Ux). One iteration leads to the update:
1
Zt = P (b; - Az - a,-jz]’-‘“)
! j>i j<i

k+1

This is exactly the Jacobi update, but with new values z if available.
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Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A = L. + U, with L, lower triangular and U upper triangular:

an 0 s 0 0 a2 --- ain
a a : 0 0
L* _ 21 22 , U=
: . 0 : - @n—1n
@ ... @nn-1 @m o ... O 0

(L. +U)z = b, s0 z = L' (b — Ux). One iteration leads to the update:

k1 L K k41
zi = (b,—— E a;jz; — E ajjz; )
n L
J>i

j<i

This is exactly the Jacobi update, but with new values z**! if available.
Red-black scheme

To parallelize the Gauss-Seidel update: First: update only at pixels (x, y) with
(x+y)%2=0.

Bjorn Hafner, Robert Maier, David Schubert : GPU Programming in Computer Vision 27128



Camputer Vision Group

Linear Equation Systems: Gauss-Seidel Method

Gauss-Seidel Method
Split A = L. + U, with L, lower triangular and U upper triangular:

an 0 s 0 0 a2 --- ain
a a : 0 0
L* _ 21 22 , U=
: . 0 : - @n—1n
@ ... @nn-1 @m o ... O 0

(L. +U)z = b, s0 z = L' (b — Ux). One iteration leads to the update:

k1 L K k41
zi = (b,—— E a;jz; — E ajjz; )
n L
J>i

j<i

This is exactly the Jacobi update, but with new values z**! if available.
Red-black scheme

To parallelize the Gauss-Seidel update: First: update only at pixels (x, y) with
(x+y)%2 = 0. Then: only with (x + y)%2 = 1.
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Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel method by linear extrapolation.
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Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel method by linear extrapolation.

SOR update step
Let ¥ be the result of one Gauss-Seidel iteration applied to z*.
Compute

zk+1 — zk+1 + 0(2k+1 _ Zk)

where 6 € [0,1) is a fixed parameter.
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Linear Equation Systems: Gauss-Seidel Method with SOR

Successive Over-Relaxation (SOR)
Accelerates the Gauss-Seidel method by linear extrapolation.

SOR update step
Let ¥ be the result of one Gauss-Seidel iteration applied to z*.
Compute

zk+1 — zk+1 + 0(2k+1 _ Zk)

where 6 € [0,1) is a fixed parameter.

Convergence
SOR converges for any 0 € [0,1). The optimal 6 depends on A.
In practice, one uses values near 1, typically 0.5-0.9, or 0.9-0.98.
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