

Practical Course: GPU Programming in Computer Vision Preliminary Meeting

Björn Häfner, Robert Maier, David Schubert

Technische Universität München Department of Informatics Computer Vision Group

Summer Semester 2018 February 7th 2018

What you will learn in the practical course

- Introduction to parallel computing on GPUs
- Introduction to NVIDIA CUDA Framework
- How to parallelize basic computer vision algorithms in CUDA/C++
- Practical project experience
- Team work & presentation skills

Computer Vision Group

Important Dates

- Preliminary Meeting: 7. February 2018 (today)
- Registration in the matching system from 9th to 14th of February 2018
 - List your preferred practical courses
 - Send an email to cuda-ss18@vision.in.tum.de with your (tabular) CV which shows that you meet the prerequisites. Deadline 13. February 2018
- Matching Results: 21. February 2018
- Only assigned students are allowed to attend !!!
- See docmatching.in.tum.de/index.php/schedule

Course Organization

- 4–5 weeks block course in the semester break (beginning of September - mid of October)
- 1 week lecture and exercise session
- 3–4 weeks project phase
- Our computer lab will be open for students
- Computers are equipped with proper GPUs (GTX 750), one for each student.
- Students will work in groups: 24 students; 8 groups, each has 3 students.
- Every group will be assigned to one advisor.

Computer Vision Group

Course Structure

Prerequisites:

- Good Knowledge in C/C++
- Knowledge in Basic Mathematics (Calculus/Analysis and Linear Algebra)
- First week
 - Lecture (CUDA + Math) in the morning
 - Hands-on programming exercises in the afternoon
- Following 3-4 weeks
 - Project phase, one project per group
 - Your own ideas
 - Project Proposals, any related topic to Computer Vision, Image Processing, Machine Learning, etc.

Demo Day

Final presentation of the projects

Evaluation Criteria

- Successful completion of the exercises (0,3 bonus)
- Gained expertise in CUDA/parallel programming
- Quality of your final project
 - Successful completion of the project
 - Projects will be evaluated by the project advisors
 - Your talk

Regular Attendance is Required

- Attendance at classes/exercises is mandatory
- In case of absence: Medical attest
- The practical course is intended as a 4-5 week full-time project

Motivation on GPU programming

CPU vs GPU

Björn Häfner, Robert Maier, David Schubert: GPU Programming in Computer Vision

Student projects from the previous years

Image Stitching of Aerial Images

Depth-Adaptive Superpixels

Kinect Fusion

Dense Visual Odometry

