

Computer Vision Group Prof. Daniel Cremers

Technische Universität München

10. Clustering

Motivation

- Supervised learning is good for interaction with humans, but labels from a supervisor are sometimes hard to obtain
- Clustering is unsupervised learning, i.e. it tries to learn only from the data
- Main idea: find a similarity measure and group similar data objects together
- Clustering is a very old research field, many approaches have been suggested
- Main problem in most methods: how to find a good number of clusters

In unsupervised learning, there is no ground truth information given.

Most Unsupervised Learning methods are based on **Clustering**.

- Given: data set $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$, number of clusters K
- Goal: find cluster centers $\{\mu_1, \ldots, \mu_K\}$ so that

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{k}\|^{2}$$

is minimal, where $r_{nk} = 1$ if \mathbf{x}_n is assigned to $\boldsymbol{\mu}_k$

- Idea: compute r_{nk} and μ_k iteratively
- Start with some values for the cluster centers
- Find optimal assignments r_{nk}
- Update cluster centers using these assignments
- Repeat until assignments or centers don't change

Initialize cluster means: $\{ \mu_1, \ldots, \mu_K \}$

Find optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\| \\ 0 & \text{otherwise} \end{cases}$$

Find new optimal means:

means:

$$\frac{\partial J}{\partial \mu_k} = 2 \sum_{n=1}^N r_{nk} (\mathbf{x}_n - \mu_k) \stackrel{!}{=} 0$$

$$\Rightarrow \mu_k = \frac{\sum_{n=1}^N r_{nk} \mathbf{x}_n}{\sum_{n=1}^N r_{nk}}$$

Find new optimal assignments:

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_{n} - \boldsymbol{\mu}_{j}\| \\ 0 & \text{otherwise} \end{cases}$$

Iterate these steps until means and assignments do not change any more

2D Example

Real data setRandom initialization

 Magenta line is "decision boundary"

The Cost Function

- After every step the cost function J is minimized
- Blue steps: update assignments
- Red steps: update means
- Convergence after 4 rounds

K-means for Segmentation

K = 10

Original image

K-Means: Additional Remarks

- K-means converges always, but the minimum is not guaranteed to be a global one
- There is an **online** version of *K*-means
 - After each addition of \mathbf{x}_n , the nearest center $\boldsymbol{\mu}_k$ is updated: $\boldsymbol{\mu}_k^{\text{new}} = \boldsymbol{\mu}_k^{\text{old}} + \eta_n(\mathbf{x}_n - \boldsymbol{\mu}_k^{\text{old}})$

• The *K*-medoid variant:

• Replace the Euclidean distance by a general measure V. $\tilde{J} = \sum_{k=1}^{N} \sum_{k=1}^{K} r_{nk} \mathcal{V}(\mathbf{x}_{n}, \boldsymbol{\mu}_{k})$

n=1 k=1

Mixtures of Gaussians

- Assume that the data consists of K clusters
- The data within each cluster is Gaussian
- For any data point x we introduce a K-dimensional binary random variable z so that:

$$p(\mathbf{x}) = \sum_{k=1}^{K} \underbrace{p(z_k = 1)}_{=:\pi_k} \mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where $z_k \in \{0, 1\}, \quad \sum_{k=1}^{K} z_k = 1$

A Simple Example

Mixture of three Gaussians with mixing coefficients

- Left: all three Gaussians as contour plot
- Right: samples from the mixture model, the red component has the most samples

Parameter Estimation

• From a given set of training data $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$ we want to find parameters $(\pi_{1,\ldots,K}, \boldsymbol{\mu}_{1,\ldots,K}, \boldsymbol{\Sigma}_{1,\ldots,K})$ so that the likelihood is maximized (MLE):

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_N \mid \pi_{1,\ldots,K},\boldsymbol{\mu}_{1,\ldots,K},\boldsymbol{\Sigma}_{1,\ldots,K}) = \prod_{n=1}^N \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)$$

or, applying the logarithm:

$$\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 However: this is not as easy as maximumlikelihood for single Gaussians!

Problems with MLE for Gaussian Mixtures

- Assume that for one k the mean μ_k is exactly at a data point \mathbf{x}_n
 - For simplicity: assume that $\Sigma_k = \sigma_k^2 I$

• Then:
$$\mathcal{N}(\mathbf{x}_n \mid \mathbf{x}_n, \sigma_k^2 I) = \frac{1}{\sqrt{2\pi}\sigma_k^D}$$

- This means that the overall log-likelihood can be maximized arbitrarily by letting $\sigma_k \rightarrow 0$ (overfitting)
- Another problem is the identifiability:
 - The order of the Gaussians is not fixed, therefore:
 - There are *K*! equivalent solutions to the MLE problem

Overfitting with MLE for Gaussian Mixtures

- One Gaussian fits exactly to one data point
- It has a very small variance, i.e. contributes strongly to the overall likelihood
- In standard MLE, there is no way to avoid this!

Expectation-Maximization

- EM is an elegant and powerful method for MLE problems with latent variables
- Main idea: model parameters and latent variables are estimated iteratively, where average over the latent variables (expectation)
- A typical example application of EM is the Gaussian Mixture model (GMM)
- However, EM has many other applications
- First, we consider EM for GMMs

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 \mid \mathbf{x}_n) \qquad z_{nk} \in \{0, 1\}$$
$$\sum z_{nk} = 1$$

k

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

• First, we define the **responsibilities:**

$$\gamma(z_{nk}) = p(z_{nk} = 1 | \mathbf{x}_n)$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• Next, we derive the log-likelihood wrt. to μ_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \boldsymbol{\mu}_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\boldsymbol{\mu}_{k} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})}$$

• We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k : $\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \pi_k} \stackrel{!}{=} \mathbf{0} \quad \text{where:} \quad \sum_{k=1}^{K} \pi_k = 1$

k=1

• We can do the same for the covariances:

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \Sigma_k} \stackrel{!}{=} \mathbf{0}$$

and we obtain:

$$\Sigma_k = \frac{\sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^T}{\sum_{n=1}^N \gamma(z_{nk})}$$

• Finally, we derive wrt. the mixing coefficients π_k :

$$\frac{\partial \log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})}{\partial \pi_k} \stackrel{!}{=} \mathbf{0} \quad \text{where:} \quad \sum_{k=1}^{K} \pi_k$$

and the result is: $\pi_k = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$

= 1

Algorithm Summary

1.Initialize means μ_k covariance matrices Σ_k and mixing coefficients π_k

2.Compute the initial log-likelihood $\log p(X \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)$

3. E-Step. Compute the responsibilities:

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

4. M-Step. Update the parameters:

$$\boldsymbol{\mu}_{k}^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \Sigma_{k}^{\text{new}} = \frac{\sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}^{\text{new}})^{T}}{\sum_{n=1}^{N} \gamma(z_{nk})} \quad \pi_{k}^{\text{new}} = \frac{1}{N} \sum_{n=1}^{N} \gamma(z_{nk})$$

5.Compute log-likelihood; if not converged go to 3.

The Same Example Again

Machine Learning for Computer Vision

27

PD Dr. Rudolph Triebel Computer Vision Group

Why is it Called "EM"?

Assume for a moment that we observe X and the binary latent variables Z. The likelihood is then:

$$p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma) = \prod_{n=1}^{N} p(\mathbf{z}_n \mid \boldsymbol{\pi}) p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\mu}, \Sigma)$$

"Complete-data log-likelihood"

where

ere
$$p(\mathbf{z}_n \mid \boldsymbol{\pi}) = \prod_{k=1}^n \pi_k^{z_{nk}}$$
 and

$$p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

K

which leads to the log-formulation:

$$\log p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} (\log \pi_k + \log \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_k, \Sigma_k))$$

Why is it Called "EM"?

Instead of maximizing the joint log-likelihood, we maximize its **expectation** under the latent variable distribution:

$$\mathbb{E}_{Z}[\log p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{Z}[z_{nk}](\log \pi_{k} + \log \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \Sigma_{k}))$$

Why is it Called "EM"?

Instead of maximizing the joint log-likelihood, we maximize its **expectation** under the latent variable distribution:

$$\mathbb{E}_{Z}[\log p(X, Z \mid \boldsymbol{\pi}, \boldsymbol{\mu}, \Sigma)] = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}_{Z}[z_{nk}](\log \pi_{k} + \log \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\mu}_{k}, \Sigma_{k}))$$

where the latent variable distribution per point is:

$$p(\mathbf{z}_n \mid \mathbf{x}_n, \boldsymbol{\theta}) = \frac{p(\mathbf{x}_n \mid \mathbf{z}_n, \boldsymbol{\theta}) p(\mathbf{z}_n \mid \boldsymbol{\theta})}{p(\mathbf{x}_n \mid \boldsymbol{\theta})} \qquad \boldsymbol{\theta} = (\boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
$$= \frac{\prod_{l=1}^{K} (\pi_l \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l))^{z_{nl}}}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

Observations

- Compared to K-means, points can now belong to both clusters (soft assignment)
- In addition to the cluster center, a covariance is estimated by EM
- Initialization is the same as used for K-means
- Number of iterations needed for EM is much higher
- Also: each cycle requires much more computation
- Therefore: start with K-means and run EM on the result of K-means (covariances can be initialized to the sample covariances of K-means)
- EM only finds a **local** maximum of the likelihood!

The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma)p(Z \mid \boldsymbol{\pi})p(\boldsymbol{\pi} \mid \alpha)p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$

data likelihood	correspondence	mixture prior	parameter prior
(Gaussian)	prob. (Multinomial)	(Dirichlet)	(Gauss-IW)

In this model, we use:

•
$$\boldsymbol{\mu} = (\boldsymbol{\mu}_1, \dots, \boldsymbol{\mu}_K)$$

•
$$\Sigma = (\Sigma_1, \ldots, \Sigma_K)$$

•
$$(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \boldsymbol{\theta}_k$$

The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma)p(Z \mid \boldsymbol{\pi})p(\boldsymbol{\pi} \mid \alpha)p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$

Г	data likelihood	correspondence	mixture prior	parameter prior
	(Gaussian)	prob. (Multinomial)	(Dirichlet)	(Gauss-IW)

Given this model, we can create new samples: $1.Sample \pi, \theta_k$ from priors $2.Sample \text{ corresp. } \mathbf{z}_i$ $3.Sample \text{ data point } \mathbf{x}_i$

The full posterior of the Gaussian Mixture Model is $p(X, Z, \boldsymbol{\mu}, \Sigma, \boldsymbol{\pi}) = p(X \mid Z, \boldsymbol{\mu}, \Sigma)p(Z \mid \boldsymbol{\pi})p(\boldsymbol{\pi} \mid \alpha)p(\boldsymbol{\mu}, \Sigma \mid \boldsymbol{\lambda})$

data likelihood	correspondence	mixture prior	parameter prior
(Gaussian)	prob. (Multinomial)	(Dirichlet)	(Gauss-IW)

An equivalent formulation of this model is this: 1.Sample π , θ_k from priors 2.Sample params $\bar{\theta}_i$ from: $p(\bar{\theta}_i \mid \pi, \theta_k) = \sum_{k=1}^{K} \pi_k \delta(\theta_k, \bar{\theta}_i)$ 3.Sample data point \mathbf{x}_i

What is the difference in that model?

- there is one parameter $ar{m{ heta}}_i$ for each observation \mathbf{x}_i
- intuitively: we first sample the location of the cluster and then the data that corresponds to it

In general, we use the notation: π

$$\pi \sim \operatorname{Dir}(\frac{\alpha}{K}\mathbf{1})$$

$$\theta_k \sim \operatorname{H}(\boldsymbol{\lambda}) \quad \text{"Base distribution"}$$

$$\bar{\theta}_i \sim \operatorname{G}(\pi, \theta_k) \text{ where}$$

$$G(\pi, \theta_k) = \sum_{k=1}^{K} \pi_k \delta(\theta_k, \bar{\theta}_i)$$

However: We need to know K

