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Motivation

• Supervised learning is good for interaction with 
humans, but labels from a supervisor are 
sometimes hard to obtain 

• Clustering is unsupervised learning, i.e. it tries to 
learn only from the data 

• Main idea: find a similarity measure and group 
similar data objects together 

• Clustering is a very old research field, many 
approaches have been suggested 

• Main problem in most methods: how to find a 
good number of clusters
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Categories of Learning

no supervision, but 
a reward function

Learning

Unsupervised 
Learning

Supervised 
Learning

Reinforcement 
Learning

clustering, density 
estimation
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learning from a training 
data set, inference on 

the test data

In unsupervised learning, there is no ground truth 
information given. 
Most Unsupervised Learning methods are based on 
Clustering.
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K-means Clustering

• Given: data set                    , number of clusters K 
• Goal: find cluster centers                      so that  
 
 
 
is minimal, where             if      is assigned to       

• Idea: compute       and      iteratively 
• Start with some values for the cluster centers 
• Find optimal assignments 
• Update cluster centers using these assignments 
• Repeat until assignments or centers don’t change 
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J =
NX

n=1

KX

k=1

rnkkxn � µkk

{x1, . . . ,xN}

{µ1, . . . ,µK}

rnk = 1 xn µk

rnk µk

rnk
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K-means Clustering
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{µ1, . . . ,µK}Initialize cluster means:
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

K-means Clustering
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Find optimal assignments:
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@J

@µk

= 2
NX

n=1

rnk(xn � µk)
!
= 0

) µk =

PN
n=1 rnkxnPN
n=1 rnk

K-means Clustering
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Find new optimal means:
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K-means Clustering
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rnk =

(
1 if k = argminj kxn � µjk
0 otherwise

Find new optimal assignments:
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K-means Clustering
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Iterate these steps until means and 
assignments do not change any more
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2D Example

!10

• Real data set 
• Random initialization

• Magenta line is “decision 
boundary”
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The Cost Function

• After every step the cost function J is minimized 
• Blue steps: update assignments 
• Red steps: update means 
• Convergence after 4 rounds
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K-means for Segmentation
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• K-means converges always, but the minimum is 
not guaranteed to be a global one 

• There is an online version of K-means  

•After each addition of xn, the nearest center μk is 
updated: 

• The K-medoid variant: 
•Replace the Euclidean distance by a general measure 
V.

K-Means: Additional Remarks

!13

µnew
k = µold

k + ⌘n(xn � µold
k )

J̃ =
NX

n=1

KX

k=1

rnkV(xn,µk)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Mixtures of Gaussians

• Assume that the data consists of K clusters 
• The data within each cluster is Gaussian 

• For any data point x we introduce a K-dimensional 
binary random variable z so that:  
 
 
 
where  

!14

zk 2 {0, 1},
KX

k=1

zk = 1

p(x) =
KX

k=1

p(zk = 1)| {z }
=:⇡k

N (x | µk,⌃k)



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

A Simple Example

• Mixture of three Gaussians with mixing coefficients 
• Left: all three Gaussians as contour plot 
• Right: samples from the mixture model, the red 

component has the most samples
!15
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Parameter Estimation

• From a given set of training data                    we 
want to find parameters 
so that the likelihood is maximized (MLE):  
 
 
 
or, applying the logarithm:  

• However: this is not as easy as maximum-
likelihood for single Gaussians!
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{x1, . . . ,xN}
(⇡1,...,K ,µ1,...,K ,⌃1,...,K)

p(x1, . . . ,xN | ⇡1,...,K ,µ1,...,K ,⌃1,...,K) =
NY

n=1

KX

k=1

⇡kN (xn | µk,⌃k)

log p(X | ⇡,µ,⌃) =
NX

n=1

log
KX

k=1

⇡kN (xn | µk,⌃k)
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Problems with MLE for Gaussian Mixtures

• Assume that for one k the mean     is exactly at a 
data point 
•For simplicity: assume that  
•Then:   

•This means that the overall log-likelihood can be 
maximized arbitrarily by letting              (overfitting)            

• Another problem is the identifiability: 
•The order of the Gaussians is not fixed, therefore: 

•There are K! equivalent solutions to the MLE problem
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µk

xn

⌃k = �2
kI

�k ! 0

N (xn | xn,�
2
kI) =

1p
2⇡�D

k
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Overfitting with MLE for Gaussian Mixtures

• One Gaussian fits exactly to one data point 
• It has a very small variance, i.e. contributes 

strongly to the overall likelihood 
• In standard MLE, there is no way to avoid this!
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Expectation-Maximization

• EM is an elegant and powerful method for MLE 
problems with latent variables 

• Main idea: model parameters and latent variables 
are estimated iteratively, where average over the 
latent variables (expectation) 

• A typical example application of EM is the 
Gaussian Mixture model (GMM) 

• However, EM has many other applications 
• First, we consider EM for GMMs

!19
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Expectation-Maximization for GMM

• First, we define the responsibilities:

!20

�(znk) = p(znk = 1 | xn) znk 2 {0, 1}
X

k

znk = 1
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Expectation-Maximization for GMM

• First, we define the responsibilities:

!21

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     : 

!22

�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0
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Expectation-Maximization for GMM

• First, we define the responsibilities: 

• Next, we derive the log-likelihood wrt. to     :  
 
 
 
and we obtain: 
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�(znk) = p(znk = 1 | xn)

=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

µk

@log p(X | ⇡,µ,⌃)
@µk

!
= 0

µk =

PN
n=1 �(znk)xnPN
n=1 �(znk)
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where: 
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
n=1 �(znk)

⇡k

@log p(X | ⇡,µ,⌃)
@⇡k

!
= 0

KX

k=1

⇡k = 1
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Expectation-Maximization for GMM

• We can do the same for the covariances:  
 
 
 
and we obtain: 

• Finally, we derive wrt. the mixing coefficients     : 
 
                                              where:  
 
and the result is:  
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@log p(X | ⇡,µ,⌃)
@⌃k

!
= 0

⌃k =

PN
n=1 �(znk)(xn � µk)(xn � µk)

T

PN
n=1 �(znk)

⇡k

@log p(X | ⇡,µ,⌃)
@⇡k

!
= 0

KX

k=1

⇡k = 1

⇡k =
1

N

NX

n=1

�(znk)
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Algorithm Summary

1.Initialize means     covariance matrices     and 
mixing coefficients 

2.Compute the initial log-likelihood 
3. E-Step. Compute the responsibilities:  
 
 

4. M-Step. Update the parameters: 
 

5.Compute log-likelihood; if not converged go to 3.
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=
⇡kN (xn | µk,⌃k)PK
j=1 ⇡jN (xn | µj ,⌃j)

�(znk)

log p(X | ⇡,µ,⌃)

µk ⌃k

⇡k

µnew
k =

PN
n=1 �(znk)xnPN
n=1 �(znk)

⌃new
k =

PN
n=1 �(znk)(xn � µnew

k )(xn � µnew
k )T

PN
n=1 �(znk)

⇡new
k =

1

N

NX

n=1

�(znk)
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The Same Example Again

!27
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Why is it Called “EM”?

Assume for a moment that we observe X and the 
binary latent variables Z. The likelihood is then:  
 
 
 
where                                and 
 
 
 
 
which leads to the log-formulation:
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p(X,Z | ⇡,µ,⌃) =
NY

n=1

p(zn | ⇡)p(xn | zn,µ,⌃)

p(zn | ⇡) =
KY

k=1

⇡znk
k

p(xn | zn,µ,⌃) =
KY

k=1

N (xn | µk,⌃k)
znk

log p(X,Z | ⇡,µ,⌃) =
NX

n=1

KX

k=1

znk(log ⇡k + logN (xn | µk,⌃k))

“Complete-data 
log-likelihood” 
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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 

!29

EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))
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Why is it Called “EM”?

Instead of maximizing the joint log-likelihood, we 
maximize its expectation under the latent variable 
distribution: 
 
 
 
where the latent variable distribution per point is:
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EZ [log p(X,Z | ⇡,µ,⌃)] =
NX

n=1

KX

k=1

EZ [znk](log ⇡k + logN (xn | µk,⌃k))

p(zn | xn,✓) =
p(xn | zn,✓)p(zn | ✓)

p(xn | ✓) ✓ = (⇡,µ,⌃)

=

QK
l=1(⇡lN (xn | µl,⌃l))znl

PK
j=1 ⇡jN (xn | µj ,⌃j)
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Observations

• Compared to K-means, points can now belong to 
both clusters (soft assignment) 

• In addition to the cluster center, a covariance is 
estimated by EM 

• Initialization is the same as used for K-means 
• Number of iterations needed for EM is much higher 
• Also: each cycle requires much more computation 
• Therefore: start with K-means and run EM on the 

result of K-means (covariances can be initialized to 
the sample covariances of K-means) 

• EM only finds a local maximum of the likelihood!

!31
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↵ ⇡

zi

�

✓k

N

K

Clustering using Mixture Models

The full posterior of the Gaussian Mixture Model is

!32

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
data likelihood 

(Gaussian)
correspondence 

prob. (Multinomial)
mixture prior 

(Dirichlet)
parameter prior 

(Gauss-IW)

xi

In this model, we use: 
•      
•      
•      

µ = (µ1, . . . ,µK)

⌃ = (⌃1, . . . ,⌃K)
(µk,⌃k) = ✓k



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

↵ ⇡

zi

�

✓k

N

K

Clustering using Mixture Models

The full posterior of the Gaussian Mixture Model is
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p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
data likelihood 

(Gaussian)
correspondence 

prob. (Multinomial)
mixture prior 

(Dirichlet)
parameter prior 

(Gauss-IW)

xi

Given this model, we can 
create new samples: 
1.Sample        from priors 
2.Sample corresp. 
3.Sample data point 

⇡,✓k

zi
xi
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↵ ⇡ �

✓k

N

K
✓̄i

Clustering using Mixture Models

The full posterior of the Gaussian Mixture Model is

!34

p(X,Z,µ,⌃,⇡) = p(X | Z,µ,⌃)p(Z | ⇡)p(⇡ | ↵)p(µ,⌃ | �)
data likelihood 

(Gaussian)
correspondence 

prob. (Multinomial)
mixture prior 

(Dirichlet)
parameter prior 

(Gauss-IW)

xi

An equivalent formulation 
of this model is this: 
1.Sample        from priors 
2.Sample params     from: 

3.Sample data point 

⇡,✓k

xi

✓̄i

p(✓̄i | ⇡,✓k) =
KX

k=1

⇡k�(✓k, ✓̄i)
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↵ ⇡ �

✓k

N

K
✓̄i

G(⇡,✓k) =
KX

k=1

⇡k�(✓k, ✓̄i)

Clustering using Mixture Models

What is the difference in that model? 
• there is one parameter    for each observation  
• intuitively: we first sample the location of the 

cluster and then the data that corresponds to it 
In general, we use the notation: 

                             where
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xi

✓̄i xi

⇡ ⇠ Dir(
↵

K
1)

“Base distribution”✓k ⇠ H(�)

✓̄i ⇠ G(⇡,✓k)

However: We need to know K


