Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

@_. ) Given this model, we can

create new samples:

(2 r@ 1.Sample =, 6, from priors

2.Sample corresp. z;
X,

3.Sample data point x;

PD Dr. Rudolph Triebel
Computer Vision Group




Repetition: MAP for Regression

In MLE, we searched for parameters w, that maximize
the data likelihood. Now, we assume a Gaussian

p(w | o9) =N(w;0,051)
Using this, we can compute the (Bayes):

Posterior Likelihood Prior
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Generalization: The Bayesian Approach

This idea can be generalized:
e Given a data-dependent likelihood term
* Find an appropriate prior distribution

e Multiply both and obtain the (unnormalized)
posterior from Bayes rule

e Main benefit: less overfitting
However:

* How should we define the prior?
Often used principle: Conjugacy
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Conjugate Priors

A conjugate prior distribution allows to represent
the posterior in the same functional (closed)
form as the prior, e.g.:

@O, Omw, o
/ ]

Gaussian prior Gaussian likelihood Gaussian posterior
COmmOﬂ paIrS Of Normal with known variance Normal
likelihood and Binomial Beta
Conjugate prlOrS are: Multinomial Dirichlet

Multivariate Normal Normal-inverse Wishart
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Multinomial

® Given K clusters and probabilities of these
K
clusters mi,....7x where » m =1
k=1

®* The probabillity that out of N samples m are Iin
cluster £ Is:

N K
plma,...,mi |, ) = (m1...mK> HMZ%
k=1

e This Is called the multinomial distribution
® |n our case:
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The Dirichlet Distribution

e The Dirichlet distribution Is defined as:

Dir(p | a) = F(al)r.(.ofOIz(&K) kl;[llugk—l g = I;Ozk

K
0<pp <1 ) m=1
k=1

* |t is the conjugate prior for
the multinomial distribution

0%,

* There, the parameter a can
be interpreted as the effective o
number of observations for
every State The simplex for K=3
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Some Examples

a=(2,2,2) a = (20,2,2)

* a9 controls the strength
of the distribution
(“peakedness”)

e ;. control the location
of the peak

a = (0.1,0.1,0.1)
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

@_. ) Given this model, we can

create new samples:

(2 r@ 1.Sample =, 6, from priors

2.Sample corresp. z;
X,

3.Sample data point x;
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

() —(m) (X w0~ Dir( e )
O r@ z; ~ Mult(7r)

@ X4 NN(HZz)
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Clustering using Mixture Models

e The full posterior of the Gaussian Mixture Model is
p(X, Z,p, % mw) =p(X | Z, 1, V)p(Z | w)p(m | a)p(p, X [ A)

data likelihood || correspondence mixture prior | parameter prior
(Gaussian) prob. (Multinomial) (Dirichlet) (Gauss-I1W)

An equivalent formulation of
this model Is this: @ | G Q

1.Sample =, 8, from priors
o

2.Sample params 9, from a
discrete dist. G

3.Sample data point x; x;
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Clustering using Mixture Models

What is the difference in that model?
e there is one parameter 0,for each observation x;

e intuitively: we first sample the location of the
cluster and then the data that corresponds to it

In general, we use the notation:
(@—@ &

T~ Dlr(El)
0, ~ H(\) “Base distribution”

0; ~ G(m, Hk) where

7T Hk Zﬂ'ké Hk,
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The Dirichlet Process

e So far, we assumed that K is known
* To extend that to infinity, we use a trick:

Definition: A Dirichlet process (DP) is a distribution
over probability measures G, i.e. G(6) > 0 and

/G(e)de — 1. If for any partition (71, ...,Tk) it holds:

(G(TY),...,G(Tk)) ~ Dir(aH(TY),...,aH(Tk))
then G is sampled from a Dirichlet process.
Notation: G ~ DP(a, H)

where o Is the concentration parameter
and H Is the base measure

PD Dr. Rudolph Triebel
Computer Vision Group




Intuitive Interpretation

e Every sample from a Dirichlet distribution is a

vector of K positive values that sum up to 1, I.e.
the sample itself is a finite distribution

e Accordingly, a sample from a Dirichlet process is
an infinite (but still discrete!) distribution

L

Base distribution
— (here Gaussian)

/ Infinitely many
- samples (sum up to 1)

D= - | 1 A LI' s ’ | | 1] 2
-3 2 1 0 1 2
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Construction of a Dirichlet Process

* The Dirichlet process is only defined implicitly, i.e.
we can test whether a given probability measure is
sampled from a DP, but we can not yet construct
one.

* A DP can be constructed using the “stick-
breaking” analogy:

* imagine a stick of length 1

*we select a random number S between 0 and 1 from a
Beta-distribution

*we break the stick at m = B * length-of-stick
e we repeat this infinitely often
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The Stick-Breaking Construction

0.5 0.4

| [31 | I_Bl ] 0.4 0.3
7T 0.3
1 BZ 1_B2 o 0.2
7T 0.1 0.1
’ B 1-3
3 3 N
3 B4 1_B4 a=5 =35
—— 0.4 0.2
T
4
5 0.3 0.15
WL
TC5 ® 0.2 0.1
o
[ 0.1 0.05
0 0
0 10 20 30 0 10 20 30

e formally, we have o o
Br ~ Beta(l,a)  m =8k | [ —8) =81 =) m)
[=1 [=1

e now we define

G(6) =) m0(0r,0) 6, ~H then: G~ DP(a, H)
k=1
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The Chinese Restaurant Process
e Consider a restaurant with infinitely many tables

e Everytime a new customer comes in, he sits at an
occupied table with probability proportional to
the number of people sitting at that table, but he
may choose to sit on a new table with decreasing
probability as more customers enter the room.
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The Chinese Restaurant Process

* [t can be shown that the probability for a new
customer is

K
_ _ 1 _
— . H) = H )(0..6
p(ONni1=01|01.n,0,H) —— (oz (0) + ;:1 N0 (0, ))

* This means that currently occupied tables are
more likely to get new customers (rich get richer)

* The number of occupied tables grows
logarithmically with the number of customers
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The DP for Mixture Modeling

e Using the stick-breaking construction, we see that
we can extend the mixture model clustering to the

situation where K goes to infinity

* The algorithm can be implemented using Gibbs
sampling
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Questions

e What if the clusters can not be approximated well
by Gaussians?

e Can we formulate an algorithm that only relies on
pairwise similarities”?

One example for such an algorithm is
Spectral Clustering
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Spectral Clustering

e Consider an undirected graph that connects all
data points

* The edge weights are the similarities (“closeness”)

* We define the weighted degree d; of a hode as the
sum of all outgoing edges

N
v di =) wy
j=1
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Spectral Clustering

e The Graph Laplacian is defined as:

L=D-W
* This matrix has the following properties:
*the 1 vector is eigenvector with eigenvalue O
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Spectral Clustering

e The Graph Laplacian is defined as:
L=D-W
* This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite
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Spectral Clustering

e The Graph Laplacian is defined as:
L=D-W
* This matrix has the following properties:

*the 1 vector is eigenvector with eigenvector O
e the matrix is symmetric and positive semi-definite

o \With these properties we can show:
Theorem: The set of eigenvectors of L with
eigenvalue 0 is spanned by the indicator vectors

1a,,...,14,, where A; are the K connected
components of the graph.
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The Algorithm

* |nput: Similarity matrix W
e ComputeL=D-W

e Compute the eigenvectors that correspond to the
K smallest eigenvalues

e Stack these vectors as columns in a matrix U
e Treat each row of U as a K-dim data point
e Cluster the N rows with K-means clustering

* The indices of the rows that correspond to the
resulting clusters are those of the original data
points.
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An Example

k-means clustering spectral cI ster'ng
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e Spectral clustering can handle complex problems
such as this one

e The complexity of the algorithm is O(N’), because
it has to solve an eigenvector problem

e But there are efficient variants of the algorithm
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Further Remarks

e To account for nodes that are highly connected,
we can use a normalized version of the graph
Laplacian

e Two different methods exist:
® Ly =D 'L=I-D"'W
¢ Lyym =D 3LD 2 =]—-D 3WD"2

* These have similar eigenspaces than the original
Laplacian L

e Clustering results tend to be better than with the
unnormalized Laplacian

* The number of clusters K can be found using the
“elgen-gap heuristic”
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Eigen-Gap Heuristic

Histogram of the sample
a

M‘ e Compute all eigen values of the
I l W graph Laplacian

oy e Sort them in increasing order

e Usually, there is a big “jump”
 Eigemvalucs between two consecutive eigen

fou values

|| Eoenaues ® The corresponding number K is

a good choice for the estimated
XAMAE number of clusters

_ “igenvalues

|- T

-
12315676 910
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Hierarchical Clustering

e Often, we want to have nested clusters instead of
a “flat” clustering

* Two possible methods:

* “bottom-up” or agglomerative clustering
* “top-down” or divisive clustering

* Both methods take a dissimilarity matrix as input
e Bottom-up grows merges points to clusters
e Top-down splits clusters into sub-clusters

e Both are heuristics, there is no clear objective
function

e They always produce a clustering (also for noise)
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Agglomerative Clustering

e Start with N clusters, each contains exactly one
data point

* At each step, merge the two most similar groups
e Repeat until there Is a single group
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Linkage

* |n agglomerative clustering, it is important to
define a distance measure between two clusters

e There are three different methods:

e Single linkage: considers the two closest elements
from both clusters and uses their distance

e Complete linkage: considers the two farthest
elements from both clusters

* Average linkage: uses the average distance between
pairs of points from both clusters

* Depending on the application, one linkage should
be preferred over the other
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Single Linkage

* The distance is based on dsi. (G, H) = 'eénif%Hdi’i/

* The resulting dendrogram is a minimum spanning
tree, I.e. it minimizes the sum of the edge weights

* Thus: we can compute the clustering in O(NZ) time

single link

0.3F
0.25F
0.2
0.15F
0.1F

0.05F
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Complete Linkage

* The distance is based on dcr.(G, H) = .Egla;}éHdi,i/

e Complete linkage fulfills the compactness
property, i.e. all points in a group should be
similar to each other

* Tends to produce clusters with smaller diameter

complete link

ﬁ VL e
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Average Linkage

. . 1 — —
* The distance is based on du. (G, H) = —— ) d; i
cGieH

* |s a good compromise between single and
complete linkage

e However: sensitive to changes on the meas. scale

average link
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Divisive Clustering

e Start with all data in a single cluster

* Recursively divide each cluster into two child
clusters

* Problem: optimal split is hard to find

e |dea: use the cluster with the largest diameter and
use K-means with K =2

e Or: use minimum-spanning tree and cut links with
the largest dissimilarity

* |n general two advantages:

e Can be faster
* More globally informed (not myopic as bottom-up)
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Choosing the Number of Clusters

* As in general, choosing the number of clusters is
hard

* When a dendrogram is available, a gap can be
detected in the lengths of the links

* This represents the dissimilarity between merged
groups

e However: In real data this can be hard to detect

* There are Bayesian technigues to address this
problem (Bayesian hierarchical clustering)
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Evaluation of Clustering Algorithms

e Clustering is unsupervised: evaluation of the
output is hard, because no ground truth is given

* |[ntuitively, points in a cluster should be similar and
points in different clusters dissimilar

e However, better methods use external information,
such as labels or a reference clustering

* Then we can compare clusterings with the labels
using different metrics, e.g.
® purity
e mutual information
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Purity

* Define N;; the number of objects in cluster i that
are in class | -

* Define N, — > N;; number of objects in cluster |
j=1

® Dij = ]]V\;Z Pi = Maxpi; “Purity”

» overall purity __ - ane) (322) (88
Z R Purity = 0.71

* Purity ranges from 0O (bad) to 1 (good)

e But: a clustering with each object in its own
cluster has a purity of 1
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Mutual Information

®*let Uand V be two clusterings

* Define the probability that a randomly chosen
point belongs to cluster ; in Uand to v; in

\uiﬂvj|

N
* Also: The prob that apointisinu;, py(i) =

va(ZJ)
-3 S vl pu v ()

1=1 5=1

pUV(iaj) —

|UZ‘

* This can be normalized to account for many small
clusters with low entropy
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Summary

e Several Clustering methods exist:

e K-means clustering and Expectation-Maximization,
both based on Gaussian Mixture Models

e K-means uses hard assignments, whereas EM uses
soft assignments and estimates also the covariances

* The Dirichlet Process is a non-parametric model to
perform clustering without specifying K

e Spectral clustering uses the graph Laplacian and
performs an eigenvector analysis

* Major Problem:;

* most clustering algorithms require the number of
clusters to be given
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