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Exercise 1: Kullback-Leibler divergence

a) What does the KL divergence describe? What are its key properties?

The Kullback-Leibler divergence is a measure of (dis-)similarity between probability
distributions. It is the extra amount of information needed when a distribution ¢
is used to approximate a distribution p. It is non-negative (Dgr(p||lq) > 0). It is
minimized (zero) when the two distributions are identical. But it is not symmetric
(Dkr(pllg) # Dkr(qllp)), therefore it is not a metric. By the definition we have:
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= —H(p)+ H(p,q)
= negative entropy of p + cross entropy between p and q

b) Compute the KL-divergence of two univariate normal distributions.
What if they have the same mean? What if they have the same variance?
Let us define py(z) = N(z|u1, 01) and pa(x) = N(x|pg, 02). We then have
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First let us simplify the fraction
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Taking the logarithm of this gives us
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Now plugging this in the KL-divergence definition we get
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If two distributions only differ in their mean values (07 = 09) then the KL-divergence
is proportional to the square of their means difference,

(p1 — M2)2.
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If they have equal mean but different variances (1 = pz) then the KL-divergence is a
function of the ratio of their variances:
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c) Consider a factorized variational distribution q(Z). By using the technique of Lagrange
multipliers, verify that minimization of Dk (p||lq) with respect to one of the factors
qi(Z;) keeping all other factors fized, leads to the solution:
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Note that by const. we imply w.r.t. ¢;. We want to minimize this and at the same
time enforce the constraint
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Therefore we add a Lagrange multiplier and our objective function becomes
L(q;(Z;)) = —/1HQj(Zj) (/p(z) Hde> dZj+ A (/ q;(Z;)dZ; — 1)
i#]
Taking the derivative w.r.t. ¢;(Z;) and setting it equal to zero we get
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We solve for A
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And thus
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