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Exercise 1: Constructing kernels

During this solution we assume the feature spaces of k1 and k2 to have finite dimensions.
Thus they can be written as k1(x1, x2) = φ1(x1)

Tφ1(x2), k2(x1, x2) = φ2(x1)
Tφ2(x2),

where φ1(x) ∈ Rn1 , φ2(x) ∈ Rn2 . Note however that in general feature spaces can be
infinite dimensional (e.g. φ(x) ∈ l2(R), see 4.). We now have to define new kernels via a
scalarproduct k(x1, x2) = 〈φ(x1), φ(x2)〉

a) k(x1, x2) = k1(x1, x2) + k2(x1, x2)

To warm up:

φ(x) =

(
φ1(x)
φ2(x)

)
∈ Rn1+n2

b) k(x1, x2) = k1(x1, x2)k2(x1, x2)

Note that the matrix-products do not commute, so it is a bit of work:

k(x1, x2) = φ1(x1)
Tφ1(x2)φ2(x1)

Tφ2(x2)

= (
∑
i

(φ1(x1))i(φ1(x2))i)(
∑
j

(φ2(x1))j(φ2(x2))j)

=
∑
i

∑
j

(φ1(x1))i(φ1(x2))i(φ2(x1))j(φ2(x2))j

=
∑
i

∑
j︸ ︷︷ ︸∑

k

(φ1(x1))i(φ2(x1))j︸ ︷︷ ︸
φk(x1)

(φ1(x2))i(φ2(x2))j︸ ︷︷ ︸
φk(x2)

⇒ φ(x) =



(φ1(x))1(φ2(x))1
...

(φ1(x))1(φ2(x))n2

(φ1(x))2(φ2(x))1
...

(φ1(x))n1(φ2(x))n2


∈ Rn1·n2

c) k(x1, x2) = f(x1)k1(x1, x2)f(x2)

φ(x) = f(x)φ1(x)
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d) k(x, y) = exp(k1(x, y))

Again we write the scalarproduct as a sum:

exp((φ1(x))Tφ(y)) = exp(
∑

(φ1(x))i(φ1(y))i)

=
∏

exp((φ1(x))i(φ1(y))i)

Since we already know that the product of kernels is again a kernel it remains to show,
that exp((φ(x))i(φ(y))i) is a kernel for a fixed index i. In the following we will omit
i and imagine φ1 to be a scalar-valued function. From the Taylor-expansion of the
exponential function, we know that

exp(φ1(x))(φ1(y)) =
∞∑
k=0

1

k!
(φ1(x))k(φ1(y))k

This is an inner product in l2(R) with

φ(x) =



φ1(x)
1√
2
φ1(x)2

1√
6
φ1(x)3

...
1√
k!
φ1(x)k

...


e) k(x1, x2) = xT1Ax2

Since A is symmetric positive-definite, it admits a Cholesky decomposition A = LLT .
Therefore, we have xT1Ax2 = xT1LL

Tx2 = (LTx1)
T (LTx2). So φ(x) = LTx.

Exercise 2: Gaussian Regression

a) Implement a simple gaussian regressor. As trainings data you can use the provided
code snippet to generate ten points along a sinus curve. Use a fixed length param of
3.0, with a sigmaf of 1.0 and sigman of 0.5.

import numpy as np
s igma no i s e = 0 .5
x min , x max = −5, 5
X tra in = np . l i n s p a c e ( x min , x max , num=10)
# Simulate s i nu s o i d with some gauss ian no i s e
Y tra in = [10∗np . s i n ( x ) + (np . random . rand ( ) − 0 . 5 ) ∗ s i gma no i s e f o r x in

X tra in ]

We suggestion you use a kernel function like this:

# Kernel f unc t i on
de f r b f k e r n e l (x , y , l =1.0 , s i gma f =1.0 , sigma n=0.5) :

r e turn s igma f ∗∗2 ∗ np . exp(−(x − y ) ∗∗2 / (2∗ l ∗∗2) ) + sigma n ∗∗2∗( x==y
)
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See code.

b) Now test different length parameter and plot the results and compare them to each
other, what do you observe.

An higher length parameter incorporates a wider range of data and makes the function
smoother, if the range contains new data points. If the value is too small, it only spikes
at the data points and else uses the system noise.

c) Do the same for the sigmaf parameter, use a length of 0.5. How does it influence the
result?

The sigmaf mainly influences the parts where no points are around, an higher value
increase the uncertainty in this areas.
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Exercise 3: Laplace Approximation

In Gaussian Process classification, we cannot integrate exactly over the parameters w.

a) Why is this the case? Why is this a problem?
Name 3 approaches one can use to tackle this problem?

• The integral of the predictive distribution becomes analytically intractable be-
cause the posterior distribution is no longer Gaussian. Therefore we don’t have
a closed form solution as in regression.
There are basically two approaches to tackle this problem. One is to approximate
the true posterior with sampling methods. The other is to use analytical approx-
imations which assume a Gaussian posterior. There are three common methods
under this approach:

– Laplace approximation

– Expectation Propagation

– Variational Inference
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