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• This incorporates the following Markov assumptions:

Graphical Representation (Rep.)

We can describe the overall process using a 
Dynamic Bayes Network:

(measurement)

(state)
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Definition
A Probabilistic Graphical Model is a diagrammatic 

representation of a probability distribution. 

• In a Graphical Model, random variables are 
represented as nodes, and statistical dependencies 
are represented using edges between the nodes. 

• The resulting graph can have the following properties: 
• Cyclic / acyclic 
• Directed / undirected 
• The simplest graphs are Directed Acyclic Graphs 

(DAG).
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Simple Example

• Given: 3 random variables    ,    , and  

• Joint prob: 

A Graphical Model based on a DAG is called a  
Bayesian Network

Random 
variables can be 

discrete or 
continuous

!5



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Simple Example

• In general:       random variables 
• Joint prob: 

• This leads to a fully connected graph. 
• Note: The ordering of the nodes in such a fully 

connected graph is arbitrary. They all represent the 
joint probability distribution:

…
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Bayesian Networks

Statistical independence can be represented by the 
absence of edges. This makes the computation 
efficient. 

                                          
  Intuitively: only      and  
   have an influence on 
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Bayesian Networks

We can now define a mapping from graphical 
models to probabilistic formulations 
(factorisations) and back:

General Factorisation:

where

and
ancestors of

!8

Note: Many different factorisations (and 
graphs) can represent the same distribution
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Elements of Graphical Models 

In case of a series of random variables with equal 
dependencies, we can subsume them using a plate:

Plate
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Elements of Graphical Models (2) 

We distinguish between input variables and explicit 
hyper-parameters:
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Elements of Graphical Models (3) 

We distinguish between observed variables and 
hidden variables: 

                                

                 (deterministic  parameters omitted in formula)
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Example: Regression as a Graphical Model

Aim: Find a general expression to compute the 
predictive distribution: 

This expression should 

• model all conditional independencies 
• explicitly incorporate all parameters (also the   
deterministic ones)  

!12

Notation:

t̂ = t⇤
p(t̂ | x̂,x, t)

Bishop vs.  
Rasmussen
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Aim: Find a general expression to compute the 
predictive distribution: 

This expression should 

• model all conditional independencies 
• explicitly incorporate all parameters (also the   
deterministic ones)  
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Notation:

t̂ = t⇤
p(t̂ | x̂,x, t)

Bishop vs.  
Rasmussen

p(t̂ | x̂,x, t,↵,�2) =

Z
p(t̂,w | x̂,x, t,↵,�2)dw

=

Z
p(t̂,w, t | x̂,x,↵,�2)

p(t | x̂,x,↵,�2)
dw /

Z
p(t̂,w, t | x̂,x,↵,�2)dw
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Regression as a Graphical Model

Here: conditioning on all  
deterministic parameters

Regression: Prediction of a new target value 

Using this, we can obtain 
the predictive distribution: 

!14

Notation:

t̂ = t⇤
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Example: Discrete Variables

• Two dependent variables: K2 - 1 parameters 

• Independent joint distribution: 2(K – 1) parameters

1 0.2

2 0.8

1 1 0.25

1 2 0.75

2 1 0.1

2 2 0.9

Here: K = 2
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Discrete Variables: General Case

In a general joint distribution with M variables we need 
to store KM -1 parameters 

If the distribution can be described by this graph: 

then we have only K -1 + (M -1) K(K -1) parameters.  
This graph is called a Markov chain with M  nodes. 
The number of parameters grows only linearly with  

the number of variables.
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Definition 1.4: Two random variables       and      are 
independent iff:   

 

 
  

 

For independent random variables       and      we have:  

 

 
  

 

Independence (Rep.)

Notation:

Independence does not imply conditional independence! 
The same is true for the opposite case.
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Conditional Independence (Rep.)

Definition 1.5: Two random variables       and      are 
conditional independent given a third random 
variable      iff:   

 

 
  

 

This is equivalent to:

and

Notation:
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Conditional Independence: Example 1

This graph represents the 
probability distribution: 

Marginalizing out c on 
both sides gives

Thus:      and     are not independent:

!19

This is in general not equal to             .p(a)p(b)
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Conditional Independence: Example 1

Now, we condition on    ( it is assumed to be known): 

Thus:      and      are conditionally independent given   : 
We say that the node at    is a tail-to-tail node on the 
path between     and  
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Conditional Independence: Example 2

This graph represents the 
distribution:

Again, we marginalize over   :

And we obtain:
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Conditional Independence: Example 2

As before, now we condition on    : 

And we obtain:

We say that the node at    is a head-to-tail node 
on the path between     and   .
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Conditional Independence: Example 3

Now consider this graph:

using:

we obtain:

And the result is:
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Conditional Independence: Example 3

Again, we condition on 

This results in:

We say that the node at    is a head-to-head node 
on the path between     and   .
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To Summarize

• When does the graph represent (conditional) 
independence? 
Tail-to-tail case: if we condition on the tail-to-tail node 
Head-to-tail case: if we cond. on the head-to-tail node 
Head-to-head case: if we do not condition on the head-
to-head node (and neither on any of its descendants) 

In general, this leads to the notion of D-separation for 
directed graphical models.
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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph. 
A path from A to B is blocked by C if it contains 
a node such that either 

a) the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or 

b) the arrows meet head-to-head at the node, and neither 
the node, nor any of its descendants, are in the set C. 
If all paths from A to B are blocked, A is said to 
be d-separated from B by C.  
Notation:
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D-Separation

Say:  A, B, and C are non-intersecting subsets of 
nodes in a directed graph. 

•A path from A to B is blocked by C if it contains 
a node such that either 

a) the arrows on the path meet either head-to-tail or tail-to-
tail at the node, and the node is in the set C, or 

b) the arrows meet head-to-head at the node, and neither 
the node, nor any of its descendants, are in the set C. 
•If all paths from A to B are blocked, A is said to 
be d-separated from B by C.  
Notation:
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D-Separation is a 
property of graphs 

and not of 
probability 

distributions
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D-Separation: Example

We condition on a descendant 
of e, i.e. it does not block the 
path from a to b.

We condition on a tail-to-tail 
node on the only path from a 
to b, i.e f blocks the path.
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I-Map

Definition 4.1: A graph G is called an I-map for a 
distribution p if every D-separation of G corresponds 
to a conditional independence relation satisfied by p: 

 

Example:  The fully connected graph is an I-map for any 
distribution, as there are no D-separations in that 
graph.
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D-Map

Definition 4.2: A graph G is called an D-map for a 
distribution p if for every conditional independence 
relation satisfied by p there is a D-separation in G : 
  

 

Example:  The graph without any edges is a D-map for 
any distribution, as all pairs of subsets of nodes are 
D-separated in that graph.  
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Perfect Map

Definition 4.3: A graph G is called a perfect map for a 
distribution p if it is a D-map and an I-map of p. 

 

A perfect map uniquely defines a probability distribution. 
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The Markov Blanket

Consider a distribution of a node xi conditioned on 
all other nodes:

Factors independent of xi 
cancel between numerator 
and denominator.

Markov blanket         at 
xi : all parents, children 
and co-parents of xi.   

!32
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In-depth: The Head-to-Head Node 

!33

Example:  
a: Battery charged (0 or 1) 
b: Fuel tank full (0 or 1) 
c: Fuel gauge says full (0 or 1) 
We can compute 
and 
and obtain 
similarly:   

“a explains c away”

a b p(c)

1 1 0.8

1 0 0.2

0 1 0.2

0 0 0.1

p(¬c) = 0.315

p(¬b | ¬c) ⇡ 0.257

p(¬b | ¬c,¬a) ⇡ 0.111
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Directed vs. Undirected Graphs
Using D-separation we can identify conditional 
independencies in directed graphical models, but: 
• Is there a simpler, more intuitive way to express 

conditional independence in a graph? 
• Can we find a representation for cases where an  

„ordering“ of the random variables is inappropriate 
(e.g. the pixels in a camera image)? 

Yes, we can: by removing the directions of the 
edges we obtain an Undirected Graphical Model, 

also known as a Markov Random Field

!34
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Example: Camera Image

• directions are counter-intuitive for images 
• Markov blanket is not just the direct neighbors 

when using a directed model
!35
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Markov Random Fields

All paths from A to B go 
through C, i.e. C blocks all 
paths.

Markov 
Blanket

We only need to condition 
on the direct neighbors of 
x to get c.i., because these 
already block every path 
from x to any other node.
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Factorization of MRFs

Any two nodes xi and xj that are not connected in an 
MRF are conditionally independent given all other nodes: 

In turn: each factor contains only nodes that are 
connected 
This motivates the consideration  
of cliques in the graph: 

• A clique is a fully connected subgraph. 

• A maximal clique can not be extended 
with another node without loosing the  
property of full connectivity.

Clique

Maximal Clique

!37

p(xi, xj | x\{i,j}) = p(xi | x\{i,j})p(xj | x\{i,j})
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Factorization of MRFs
In general, a Markov Random Field is factorized as 

where C is the set of all (maximal) cliques and ΦC  is a 

positive function of a given clique xC of nodes, called 
the clique potential. Z is called the partition function. 
Theorem (Hammersley/Clifford): Any undirected 
model with associated clique potentials ΦC  is a perfect 
map for the probability distribution defined by Equation 
(4.1). 
As a conclusion, all probability distributions that can be 
factorized as in (4.1), can be represented as an MRF.
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Converting Directed to Undirected Graphs (1)

In this case: Z=1

!39
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Converting Directed to Undirected Graphs (2)

In general: conditional distributions in the directed graph 
are mapped to cliques in the undirected graph 
However: the variables are not conditionally independent 
given the head-to-head node 
Therefore: Connect all parents of head-to-head nodes with 
each other (moralization)

!40

p(x) = p(x1)p(x2)p(x3)p(x4 | x1, x2, x3)
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Converting Directed to Undirected Graphs (2)

Problem: This process can remove conditional 
independence relations, making the model too complex 
Generally: There is no one-to-one mapping between the 
distributions represented by directed and by undirected 
graphs.
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p(x) = �(x1, x2, x3, x4)p(x) = p(x1)p(x2)p(x3)p(x4 | x1, x2, x3)
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Representability
• As for DAGs, we can define an I-map, a D-map 

and a perfect map for MRFs. 

• The set of all distributions for which a DAG 
exists that is a perfect map is different from 
that for MRFs. 

Distributions 
with a DAG as 
perfect map

Distributions 
with an MRF as 

perfect map

All distributions
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Directed vs. Undirected Graphs

Both distributions can not be represented in the other 
framework (directed/undirected) with all conditional 
independence relations.
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