

Computer Vision Group Prof. Daniel Cremers

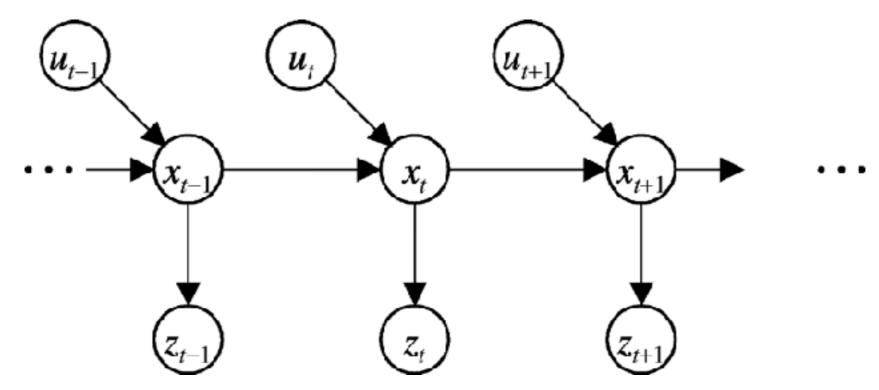
Technische Universität München

3. Probabilistic Graphical Models

The Bayes Filter (Rep.)

Graphical Representation (Rep.)

We can describe the overall process using a Dynamic Bayes Network:



• This incorporates the following Markov assumptions: $p(z_t \mid x_{0:t}, u_{1:t}, z_{1:t}) = p(z_t \mid x_t) \text{ (measurement)}$ $p(x_t \mid x_{0:t-1}, u_{1:t}, z_{1:t}) = p(x_t \mid x_{t-1}, u_t) \text{ (state)}$

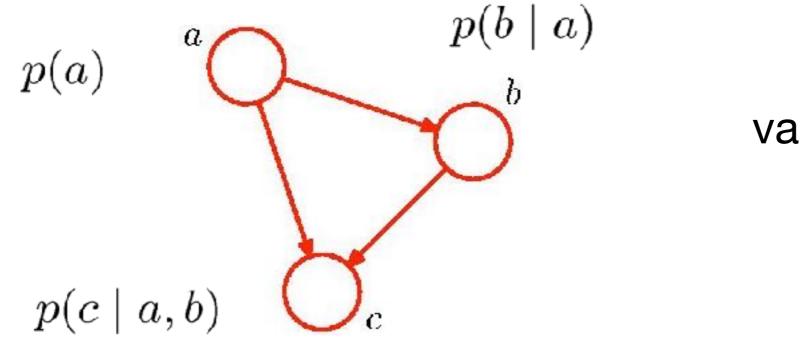
Definition

A Probabilistic Graphical Model is a diagrammatic representation of a probability distribution.

- In a Graphical Model, random variables are represented as **nodes**, and statistical dependencies are represented using **edges** between the nodes.
- The resulting graph can have the following properties:
- Cyclic / acyclic
- Directed / undirected
- The simplest graphs are Directed Acyclic Graphs (DAG).

Simple Example

- Given: 3 random variables a, b, and c
- Joint prob: p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a)



Random variables can be discrete or continuous

A Graphical Model based on a DAG is called a **Bayesian Network**

Simple Example

- In general: K random variables x_1, x_2, \ldots, x_K
- Joint prob:

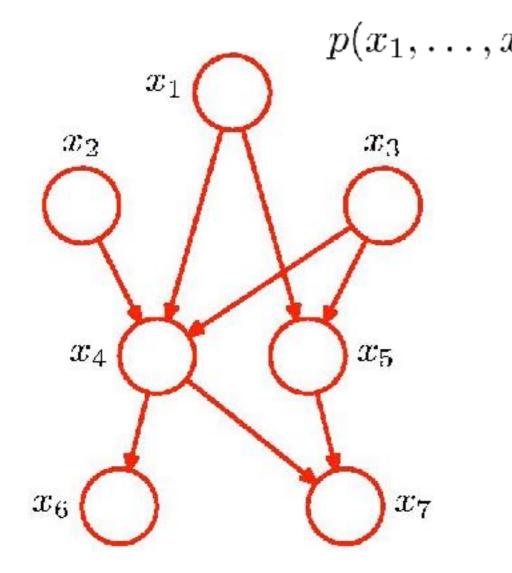
 $p(x_1,\ldots,x_K) = p(x_K|x_1,\ldots,x_{K-1})\ldots p(x_2|x_1)p(x_1)$

- This leads to a fully connected graph.
- Note: The ordering of the nodes in such a fully connected graph is arbitrary. They all represent the joint probability distribution:

$$p(a, b, c) = p(a|b, c)p(b|c)p(c)$$
$$p(a, b, c) = p(b|a, c)p(a|c)p(c)$$

Bayesian Networks

Statistical independence can be represented by the **absence** of edges. This makes the computation efficient.

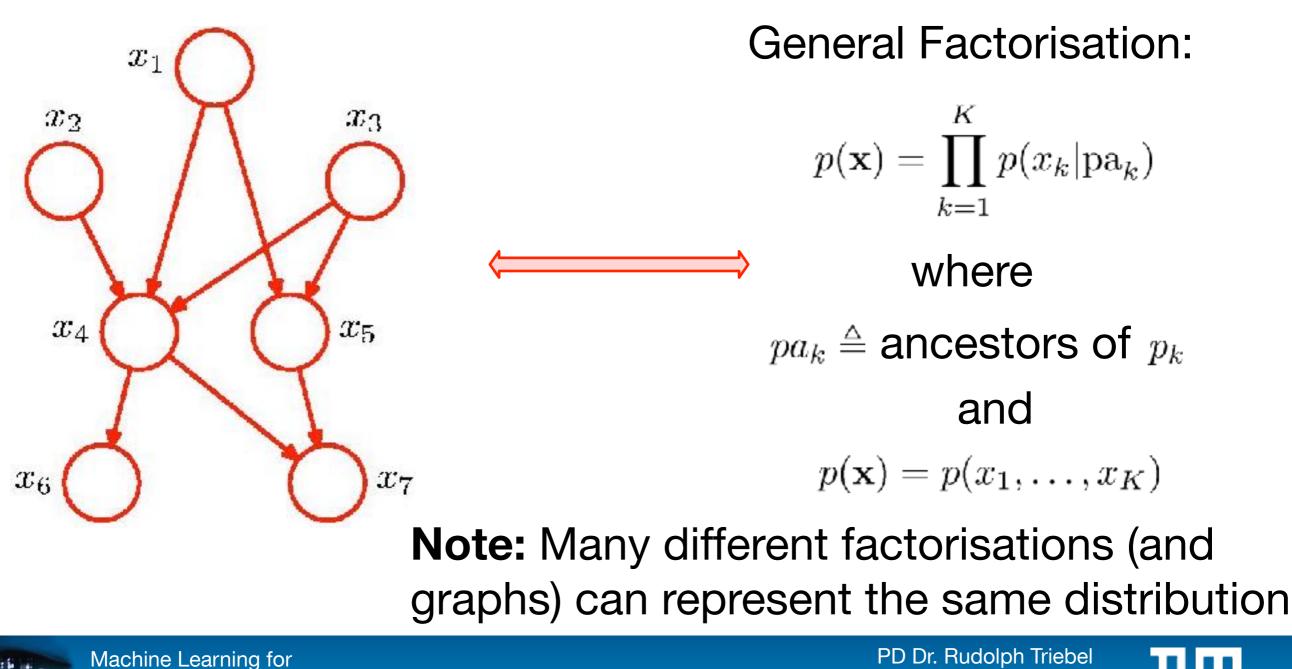


 $p(x_1, \ldots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$ $p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$

Intuitively: only x_1 and x_3 have an influence on x_5

Bayesian Networks

We can now define a mapping from graphical models to probabilistic formulations (factorisations) and back:

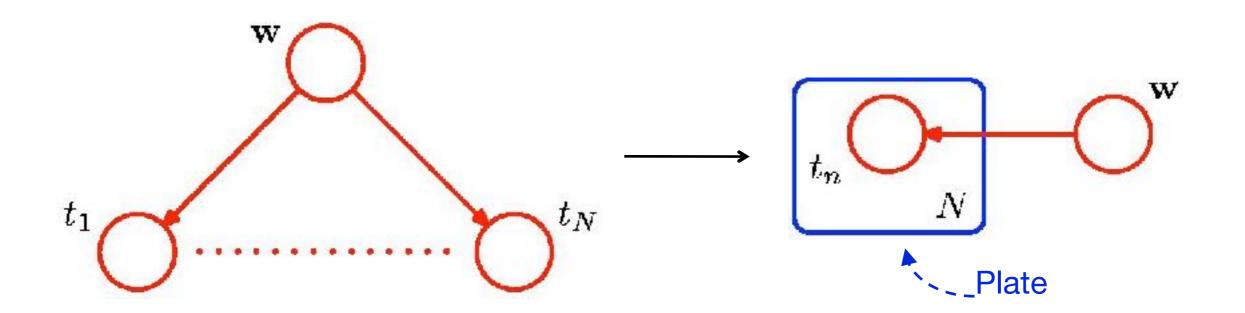


Computer Vision Group

Elements of Graphical Models

In case of a series of random variables with equal dependencies, we can subsume them using a **plate:**

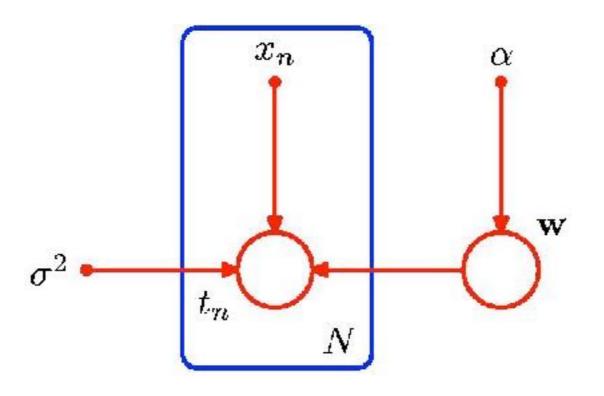
$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | \mathbf{w})$$



Elements of Graphical Models (2)

We distinguish between **input** variables and explicit **hyper-parameters**:

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^N p(t_n | \mathbf{w}, x_n, \sigma^2).$$

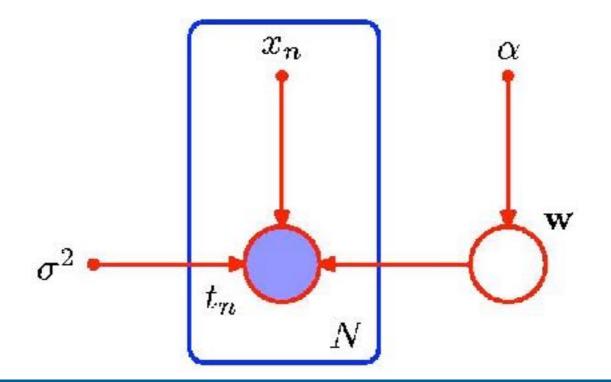


Elements of Graphical Models (3)

We distinguish between **observed** variables and **hidden** variables:

$$p(\mathbf{w}|\mathbf{t}) \propto p(\mathbf{w}) \prod_{n=1}^{N} p(t_n|\mathbf{w})$$

(deterministic parameters omitted in formula)



Machine Learning for Computer Vision

PD Dr. Rudolph Triebel

Computer Vision Group

 $\hat{t} = t^*$ Bishop vs.

Rasmussen

Notation:

Example: Regression as a Graphical Model

Aim: Find a general expression to compute the predictive distribution: $p(\hat{t} \mid \hat{x}, \mathbf{x}, \mathbf{t})$

model all conditional independencies

This expression should

 explicitly incorporate all parameters (also the deterministic ones)

Machine Learning for Computer Vision

Example: Regression as a Graphical Model

Aim: Find a general expression to compute the **predictive distribution**: $p(\hat{t} \mid \hat{x}, \mathbf{x}, \mathbf{t})$

This expression should

- model all conditional independencies
- explicitly incorporate all parameters (also the deterministic ones)

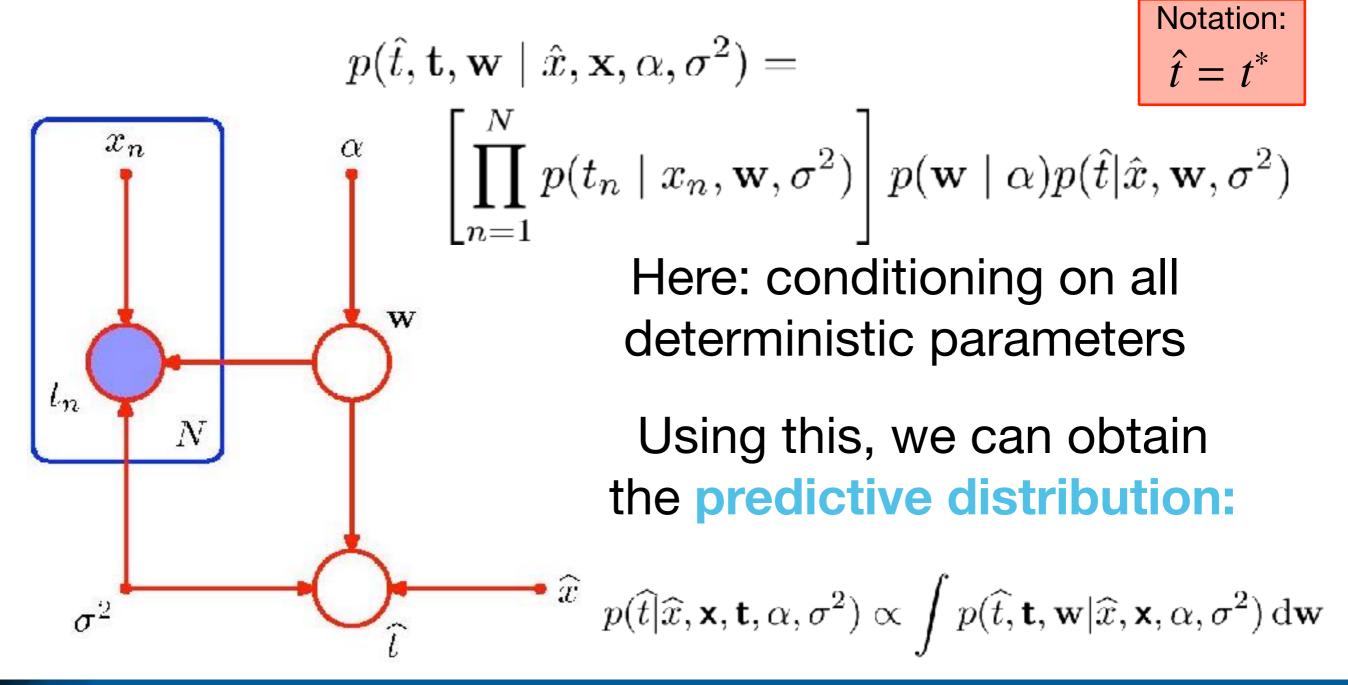
$$p(\hat{t} \mid \hat{x}, \mathbf{x}, \mathbf{t}, \alpha, \sigma^2) = \int p(\hat{t}, \mathbf{w} \mid \hat{x}, \mathbf{x}, \mathbf{t}, \alpha, \sigma^2) d\mathbf{w}$$
$$= \int \frac{p(\hat{t}, \mathbf{w}, \mathbf{t} \mid \hat{x}, \mathbf{x}, \alpha, \sigma^2)}{p(\mathbf{t} \mid \hat{x}, \mathbf{x}, \alpha, \sigma^2)} d\mathbf{w} \propto \int p(\hat{t}, \mathbf{w}, \mathbf{t} \mid \hat{x}, \mathbf{x}, \alpha, \sigma^2) d\mathbf{w}$$

Notation:
$$\hat{t} = t^*$$

Bishop vs. Rasmussen

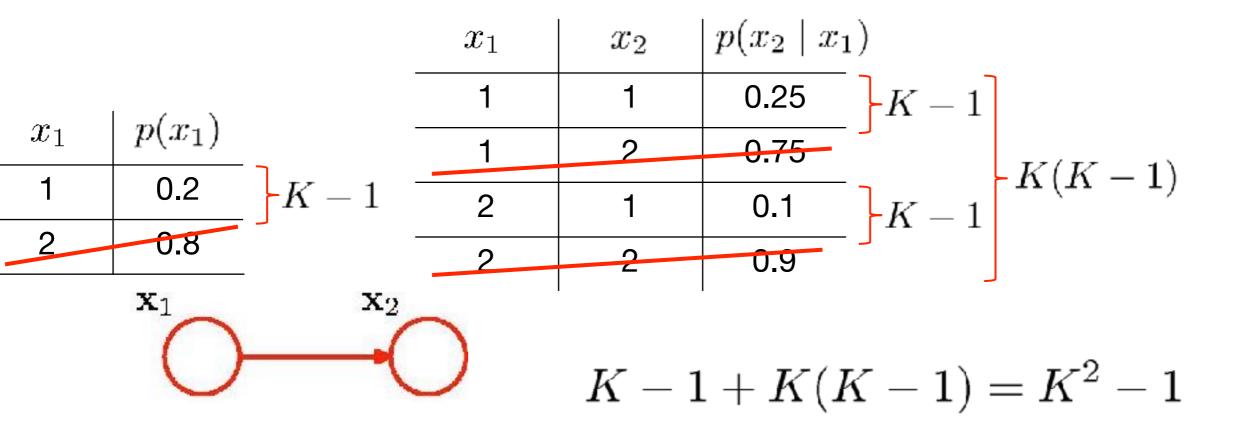
Regression as a Graphical Model

Regression: Prediction of a new target value \hat{t}



Example: Discrete Variables

• Two dependent variables: *K*² - 1 parameters



• Independent joint distribution: 2(K-1) parameters

$$K - 1 + K - 1 = 2(K - 1)$$

Here: K = 2

Discrete Variables: General Case

In a general joint distribution with M variables we need to store K^M -1 parameters

If the distribution can be described by this graph:



then we have only *K*-1 + (*M*-1) *K*(*K*-1) parameters.
This graph is called a Markov chain with M nodes.
The number of parameters grows only linearly with the number of variables.

Independence (Rep.)

Definition 1.4: Two random variables X and Y are *independent* iff: p(x, y) = p(x)p(y)

For independent random variables X and Y we have:

$$p(x \mid y) = \frac{p(x, y)}{p(y)} = \frac{p(x)p(y)}{p(y)} = p(x)$$

Notation:	$x \perp\!\!\!\perp y \mid \emptyset$
-----------	---------------------------------------

Independence does **not** imply conditional independence! The same is true for the opposite case.

Conditional Independence (Rep.)

Definition 1.5: Two random variables X and Y are conditional independent given a third random variable Z iff:

$$p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

This is equivalent to:

$$p(x \mid z) = p(x \mid y, z) \text{ and}$$
$$p(y \mid z) = p(y \mid x, z)$$

Notation:
$$x \perp y \mid z$$

This graph represents the probability distribution:

p(a, b, c) = p(a|c)p(b|c)p(c)

Marginalizing out c on both sides gives

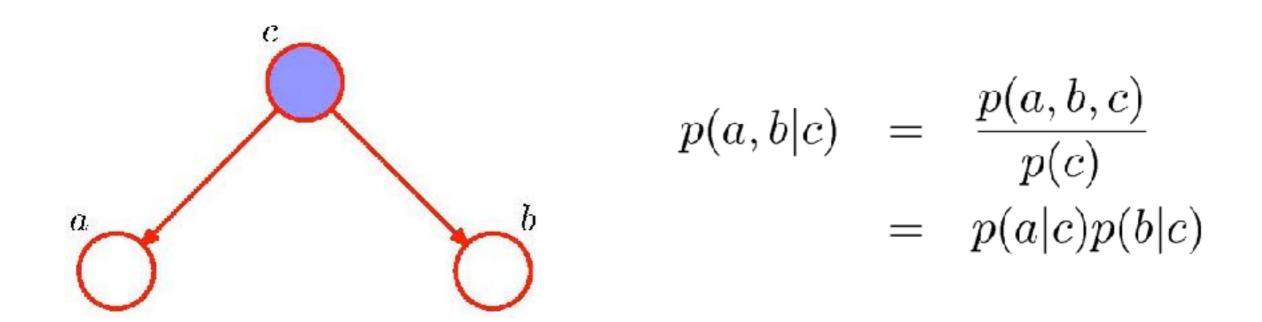
$$p(a,b) = \sum_{c} p(a|c)p(b|c)p(c)$$

This is in general not equal to p(a)p(b).

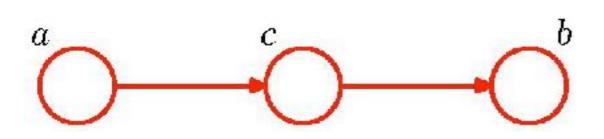
Thus: *a* and *b* are not independent: $a \not\perp b \mid \emptyset$

a

Now, we condition on c (it is assumed to be known):



Thus: *a* and *b* are conditionally independent given *c*: $a \perp b \mid c$ We say that the node at *c* is a **tail-to-tail node** on the path between *a* and *b*



This graph represents the distribution:

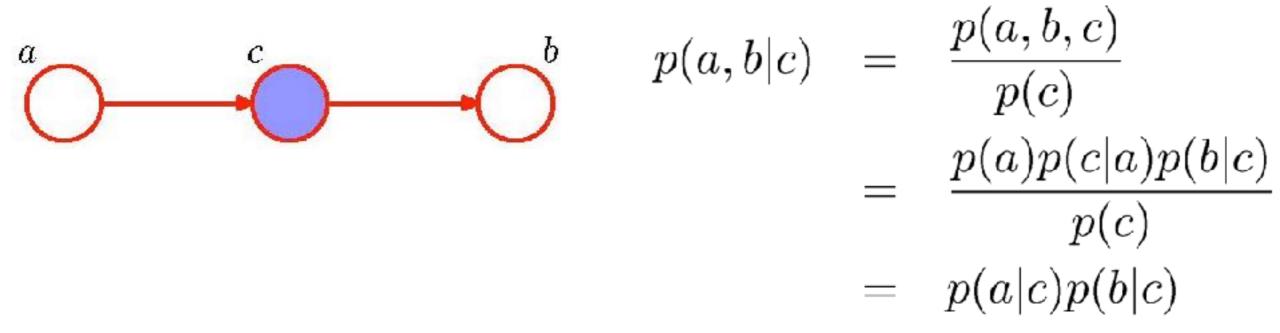
p(a, b, c) = p(a)p(c|a)p(b|c)

Again, we marginalize over c:

$$\begin{aligned} p(a,b) &= p(a) \sum_{c} p(c|a) p(b|c) = p(a) \sum_{c} p(c|a) p(b|c,a) \\ &= p(a) \sum_{c} \frac{p(c,a) p(b,c,a)}{p(a) p(c,a)} = p(a) \sum_{c} p(b,c \mid a) \\ &= p(a) p(b|a) \end{aligned}$$

And we obtain: $a \not\perp b \mid \emptyset$

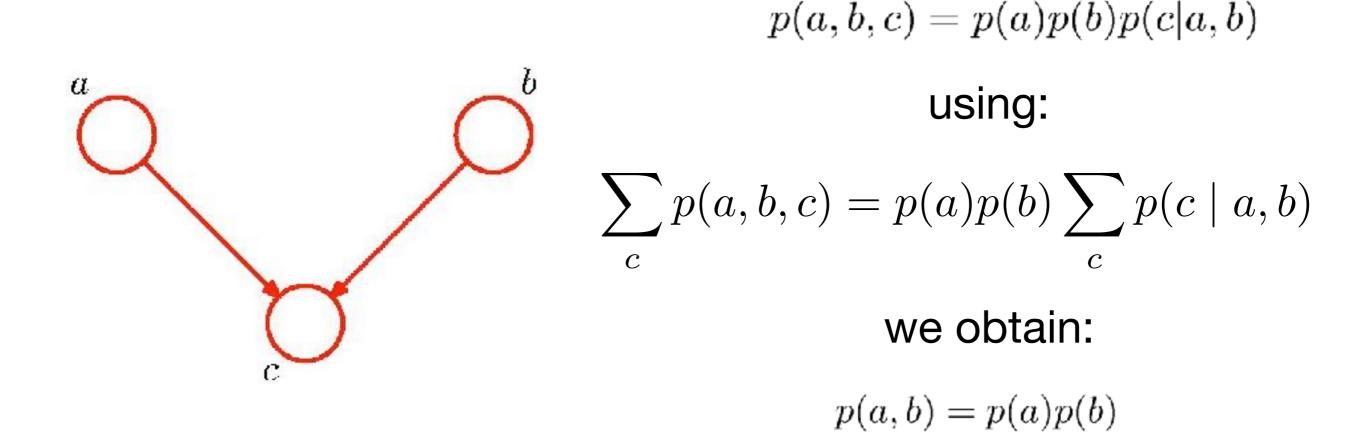
As before, now we condition on c:



And we obtain: $a \perp b \mid c$

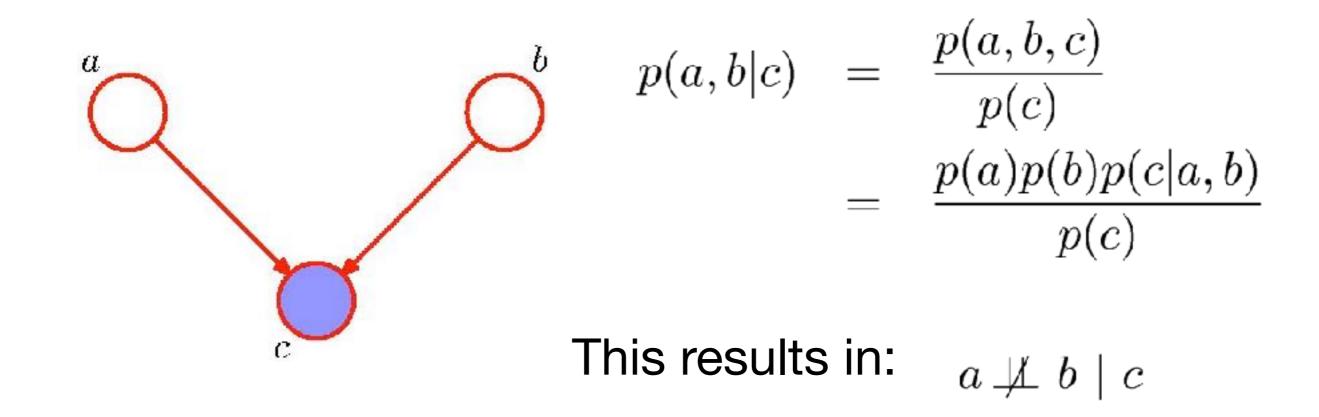
We say that the node at c is a head-to-tail node on the path between a and b.

Now consider this graph:



And the result is: $a \perp b \mid \emptyset$

Again, we condition on_c



We say that the node at *c* is a **head-to-head node** on the path between *a* and *b*.

To Summarize

When does the graph represent (conditional) independence?

Tail-to-tail case: if we condition on the tail-to-tail node Head-to-tail case: if we cond. on the head-to-tail node Head-to-head case: if we do not condition on the headto-head node (and neither on any of its descendants)

In general, this leads to the notion of **D-separation** for directed graphical models.

D-Separation

Say: A, B, and C are non-intersecting subsets of nodes in a directed graph.

A path from A to B is **blocked** by C if it contains a node such that either

 a) the arrows on the path meet either head-to-tail or tail-totail at the node, and the node is in the set C, or

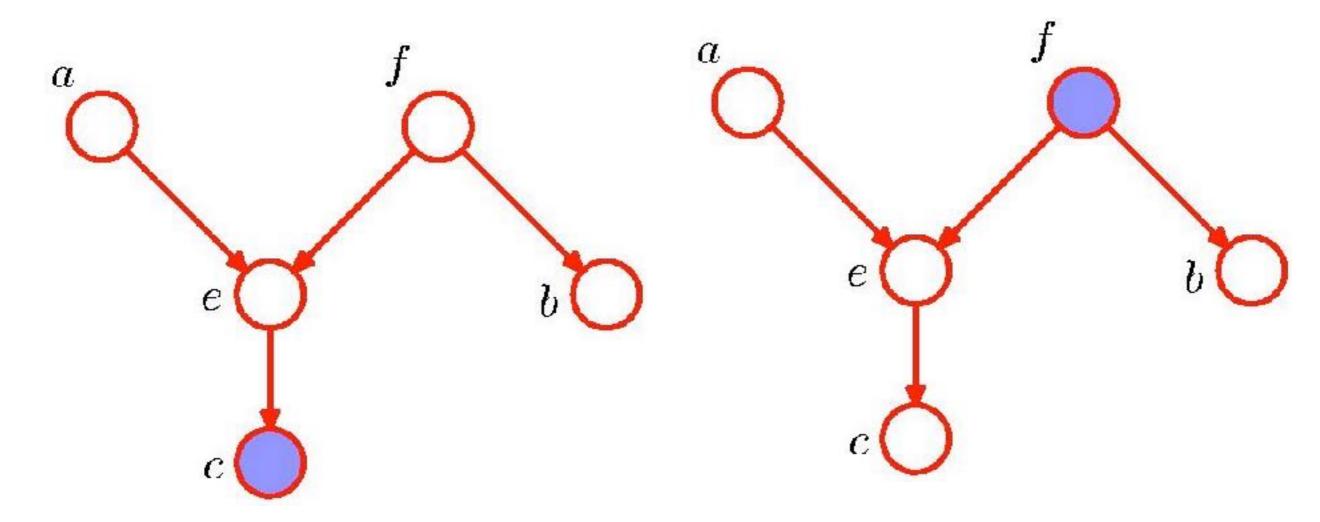
b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
If all paths from A to B are blocked, A is said to be d-separated from B by C.

Notation: dsep(A, B|C)

D-Separation

Say: A, B, and C are non-intersecting subsets of **D-Separation is a** nodes A path ntains property of graphs a nod a) the a ^r tail-toand not of tail at t probability b) the a neither the noc **J**. distributions If all p aid to be d-separated from B by C. Notation: dsep(A, B|C)

D-Separation: Example



$\neg \operatorname{dsep}(a, b|c)$

We condition on a descendant of e, i.e. it does not block the path from a to b.

$\operatorname{dsep}(a,b|f)$

We condition on a tail-to-tail node on the only path from a to b, i.e f blocks the path.

I-Map

Definition 4.1: A graph G is called an I-map for a distribution p if every D-separation of G corresponds to a conditional independence relation satisfied by p:

$\forall A, B, C : \operatorname{dsep}(A, B, C) \Rightarrow A \perp\!\!\!\perp B \mid C$

Example: The fully connected graph is an I-map for any distribution, as there are no D-separations in that graph.

D-Map

Definition 4.2: A graph G is called an **D-map** for a distribution p if for every conditional independence relation satisfied by p there is a D-separation in G :

$\forall A, B, C : A \perp\!\!\!\perp B \mid C \Rightarrow \operatorname{dsep}(A, B, C)$

Example: The graph without any edges is a D-map for any distribution, as all pairs of subsets of nodes are D-separated in that graph.

Perfect Map

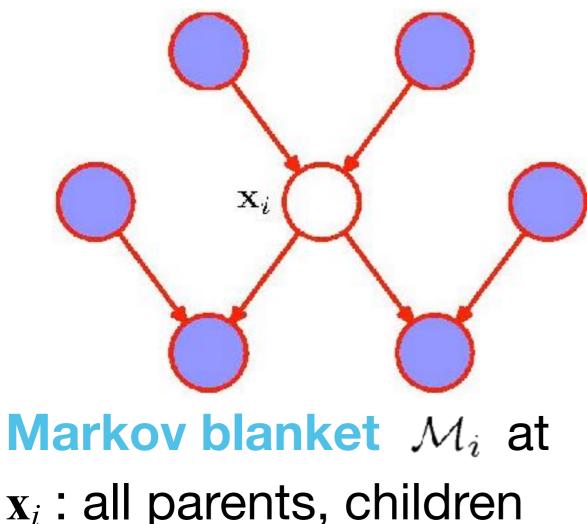
Definition 4.3: A graph G is called a perfect map for a distribution p if it is a D-map and an I-map of p.

$\forall A, B, C : A \perp\!\!\!\perp B \mid C \Leftrightarrow \operatorname{dsep}(A, B, C)$

A perfect map uniquely defines a probability distribution.

The Markov Blanket

Consider a distribution of a node x_i conditioned on all other nodes:

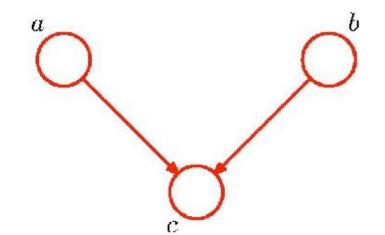


and co-parents of \mathbf{x}_i .

$$p(\mathbf{x}_{i}|\mathbf{x}_{\{j\neq i\}}) = \frac{p(\mathbf{x}_{1}, \dots, \mathbf{x}_{M})}{\int p(\mathbf{x}_{1}, \dots, \mathbf{x}_{M}) d\mathbf{x}_{i}}$$
$$= \frac{\prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k})}{\int \prod_{k} p(\mathbf{x}_{k}|\mathbf{pa}_{k}) d\mathbf{x}_{i}}$$

Factors independent of \mathbf{x}_i cancel between numerator and denominator.

In-depth: The Head-to-Head Node



$p(a) = 0.9 \qquad p$		p(b) = 0.9
а	b	<i>p(c)</i>
1	1	0.8
1	0	0.2
0	1	0.2
0	0	0.1

Example:

- a: Battery charged (0 or 1)
- b: Fuel tank full (0 or 1)
- c: Fuel gauge says full (0 or 1)
- We can compute $p(\neg c) = 0.315$
- **and** $p(\neg c \mid \neg b) = 0.81$
- and obtain $p(\neg b \mid \neg c) \approx 0.257$
- similarly: $p(\neg b \mid \neg c, \neg a) \approx 0.111$

"*a* explains *c* away"

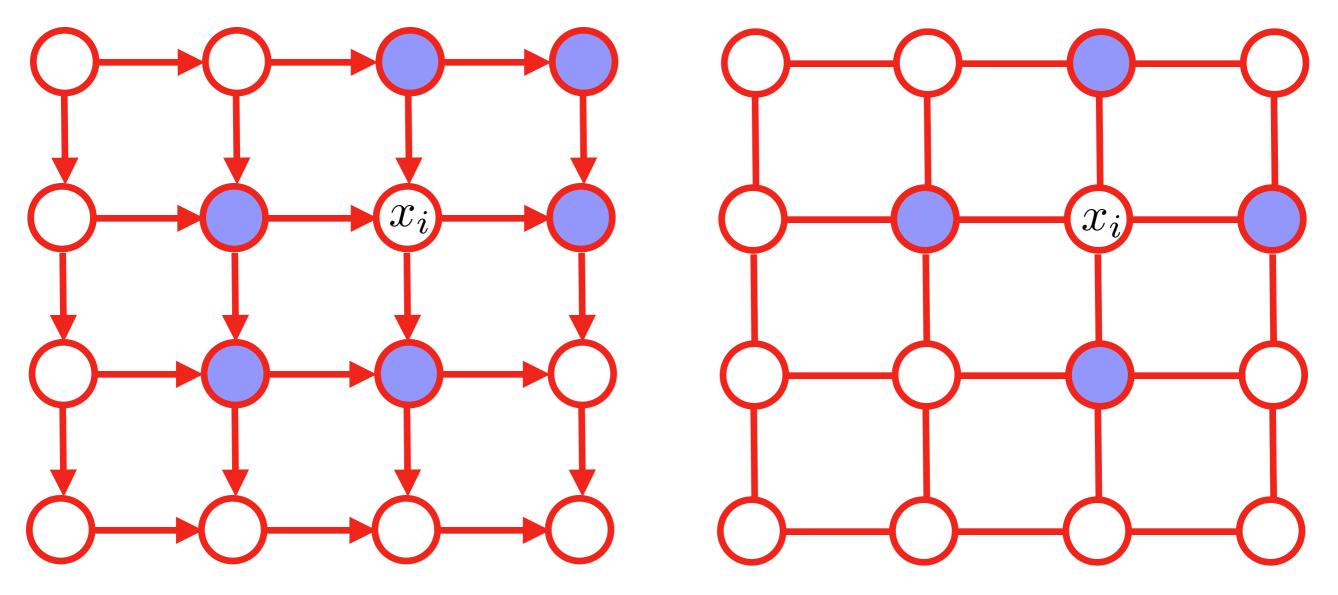
Directed vs. Undirected Graphs

Using D-separation we can identify conditional independencies in directed graphical models, but:

- Is there a simpler, more intuitive way to express conditional independence in a graph?
- Can we find a representation for cases where an "ordering" of the random variables is inappropriate (e.g. the pixels in a camera image)?

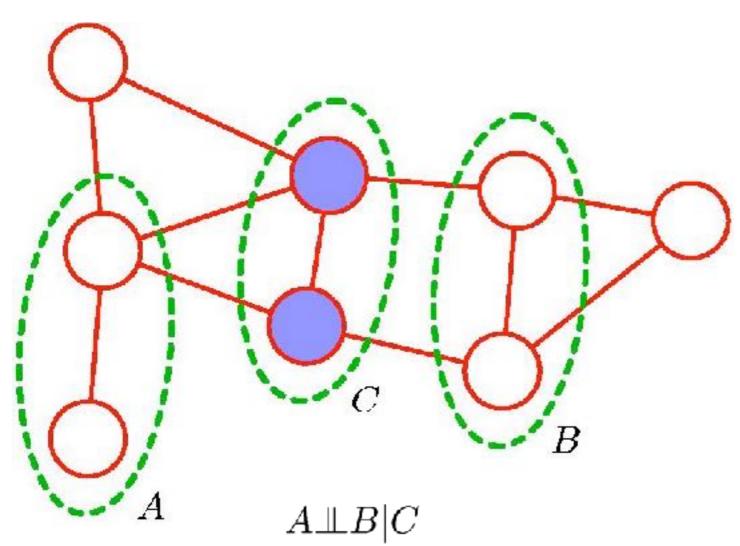
Yes, we can: by removing the directions of the edges we obtain an Undirected Graphical Model, also known as a Markov Random Field

Example: Camera Image



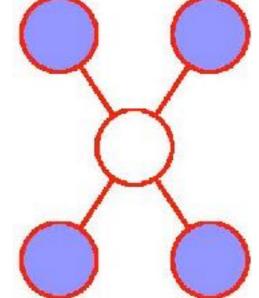
- directions are counter-intuitive for images
- Markov blanket is not just the direct neighbors when using a directed model

Markov Random Fields



All paths from *A* to *B* go through *C*, i.e. *C* blocks all paths.

Markov Blanket



We only need to condition on the **direct neighbors** of

x to get c.i., because these already block every path from x to any other node.

Factorization of MRFs

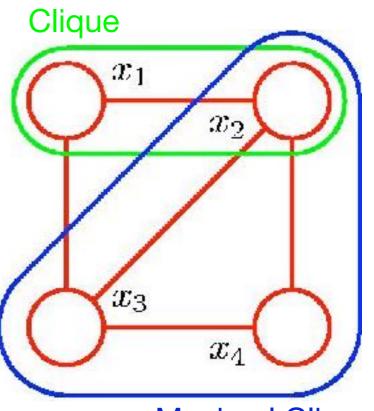
Any two nodes x_i and x_j that are not connected in an MRF are conditionally independent given all other nodes:

 $p(x_i, x_j \mid \mathbf{x}_{\backslash \{i,j\}}) = p(x_i \mid \mathbf{x}_{\backslash \{i,j\}}) p(x_j \mid \mathbf{x}_{\backslash \{i,j\}})$

In turn: each factor contains only nodes that are connected

This motivates the consideration of cliques in the graph:

- A clique is a fully connected subgraph.
- A maximal clique can not be extended with another node without loosing the property of full connectivity.



Maximal Clique

Factorization of MRFs

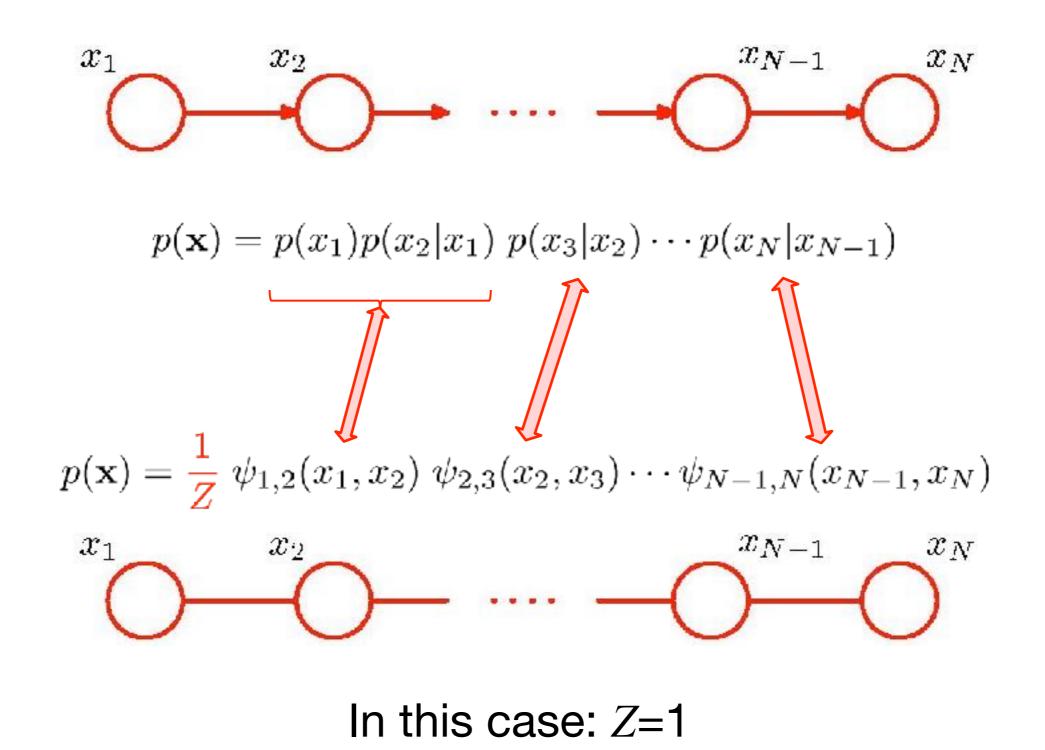
In general, a Markov Random Field is factorized as

$$p(\mathbf{x}) = \frac{\prod_C \phi_C(\mathbf{x}_C)}{\sum_{\mathbf{x}'} \prod_C \phi_C(\mathbf{x}'_C)} = \frac{1}{Z} \prod_C \phi_C(\mathbf{x}_C)$$
(4.1)

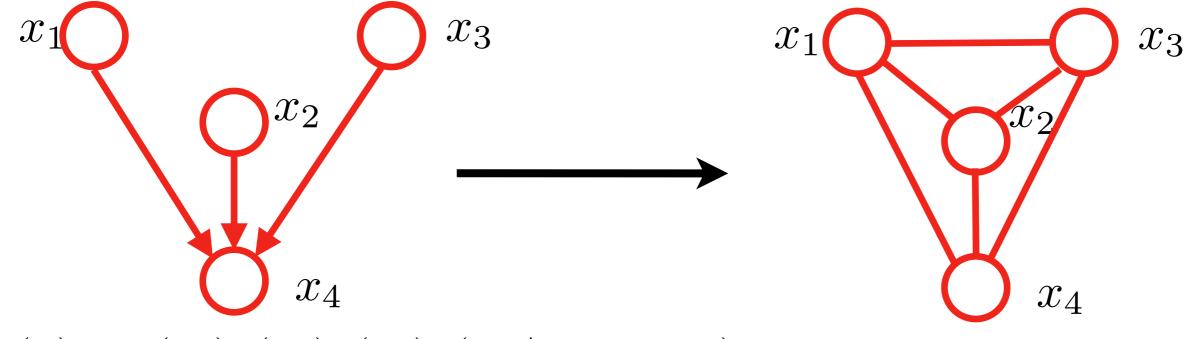
where *C* is the set of all (maximal) cliques and Φ_C is a positive function of a given clique \mathbf{x}_C of nodes, called the **clique potential**. *Z* is called the **partition function**. **Theorem (Hammersley/Clifford):** Any undirected model with associated clique potentials Φ_C is a perfect map for the probability distribution defined by Equation (4.1).

As a conclusion, all probability distributions that can be factorized as in (4.1), can be represented as an MRF.

Converting Directed to Undirected Graphs (1)



Converting Directed to Undirected Graphs (2)

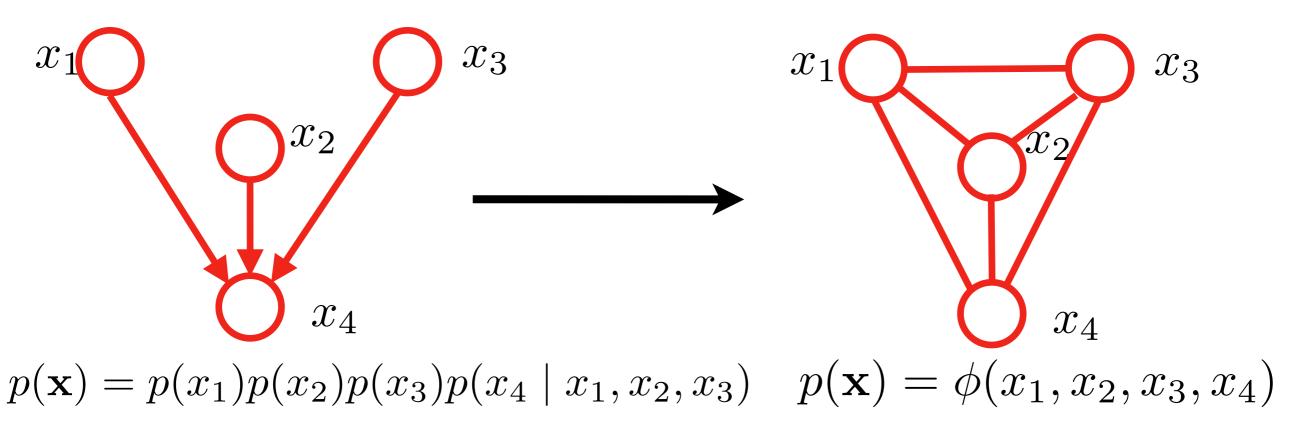


 $p(\mathbf{x}) = p(x_1)p(x_2)p(x_3)p(x_4 \mid x_1, x_2, x_3)$

In general: conditional distributions in the directed graph are mapped to cliques in the undirected graph

- However: the variables are not conditionally independent given the head-to-head node
- Therefore: Connect all parents of head-to-head nodes with each other (moralization)

Converting Directed to Undirected Graphs (2)

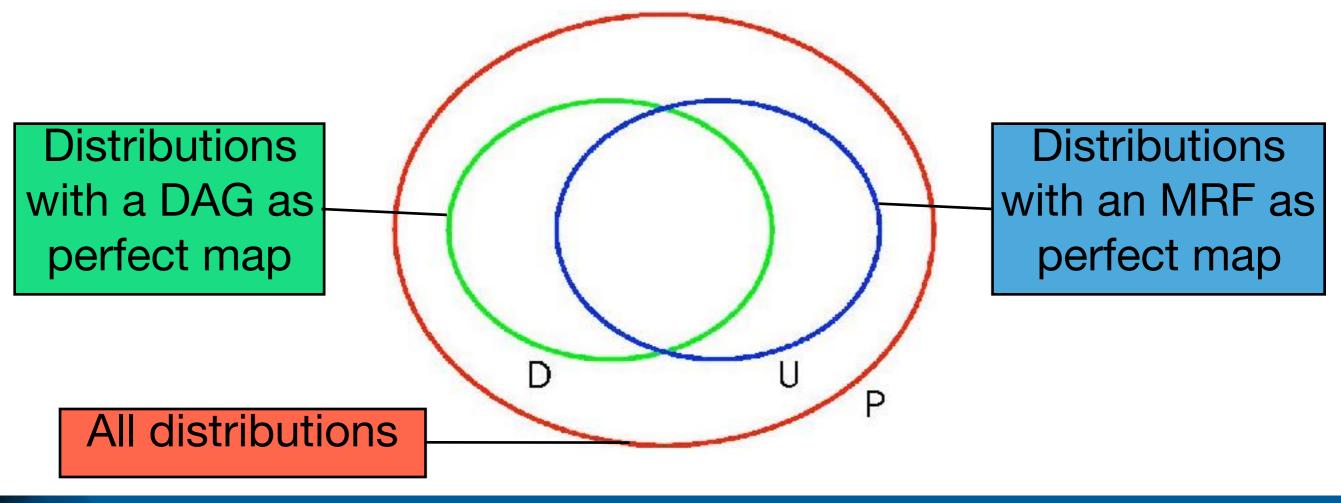


Problem: This process can remove conditional independence relations, making the model too complex **Generally:** There is no one-to-one mapping between the

distributions represented by directed and by undirected graphs.

Representability

- As for DAGs, we can define an I-map, a D-map and a perfect map for MRFs.
- The set of all distributions for which a DAG exists that is a perfect map is different from that for MRFs.



Directed vs. Undirected Graphs

