Example: Camera Image

e directions are counter-intuitive for images

e Markov blanket is not just the direct neighbors
when using a directed model
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Markov Random Fields

Markov
Blanket

\l
L

# e .
\ ‘, " "
vl ALB|C We only need to condition

on the direct neighbors of
All paths from 4 to B go . -/
x to get c.i., because these

through C, i.e. C blocks all  already block every path
paths. from x to any other node.
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Factorization of MRFs

Any two nodes x; and x; that are not connected in an
MRF are conditionally independent given all other nodes:

p(xis x5 | X\(i,53) = p(@i | %\gi51)P(%5 | X\ (i53)
This means: each factor contains only nodes that are
connected

This motivates the consideration Clique
of cligues in the graph: /-

. A clique is a fully connected subgraph. (

. A maximal cligue can not be extended
with another node without loosing the
property of full connectivity.

Maximal Clique
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Factorization of MRFs
In general, a Markov Random Field Is factorized as

%) = HCEC¢ (Xc x
W = 5= o~ z LI b))

where C is the set of all (maX|maI) cliques and¥.(x.) is

a positive function of a given clique x. of nodes, called
the clique potential. Z is called the partition function.

Theorem (Hammersley/Clifford): Any undirected
model with associated clique potentials ¥ is a perfect

map for the probability distribution defined by Equation
(4.1).

As a conclusion, all probabillity distributions that can be
factorized as in (4.1), can be represented as an MRF.
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Representability

. As for DAGs, we can define an |-map, a D-map
and a perfect map for MRFs.

. The set of all distributions for which a DAG

exists that is a perfect map is different from
that for MRFs.

| Al distributions | P
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A Simple Example

If a distribution p satisfies all conditional independence

relationships of this graph, then we can write p as

1

p(X) — 2%23(%,$2,$3)¢234($2,$3,$4)¢35(5173,375)
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A Simple Example

How to define the potentials?

* |ntuitively, the potential of a
clique should be high, iff the
joint probability of the corres-
ponding random variables Is
high.

1

p(X) — 2%23(%,$2,$3)¢234($2,$3,$4)¢35(5173,$5)
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A Simple Example

How to define the potentials?

* |ntuitively, the potential of a
clique should be high, iff the
joint probability of the corres-
ponding random variables Is
high.

* |[n most cases the potential is
defined using a log-linear
model:

log .(x.) = qu(XC)THC
_— AN

Feature function Parameters
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A Simple Example

How to define the potentials?

* |ntuitively, the potential of a
clique should be high, iff the
joint probability of the corres-
ponding random variables Is
high.

* |[n most cases the potential is
defined using a log-linear

model
log Ve (%c) = ¢o(xc)” O, making the parameters explicit:
= logp(x | 0) = qu x.)' 0. — log Z(0)

ceC
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A Simple Example

Using numbers, e.g.:

| et all variables be binary:
r; €{0,1}

e \We can define features ¢

1 ifa, =1Vne (i, k}
Gijk(Tis Tj, Th) = { 0 otherwise
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A Simple Example

Using numbers, e.g.:

| et all variables be binary:
r; €{0,1}

e \We can define features ¢

e and determine weights 6

1 ifa, =1Vne (i, k}
Gijk(Tis Tj, Th) = { 0 otherwise

6=(00000001)"
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A Simple Example

Using numbers, e.g.:

| et all variables be binary:
r; €{0,1}

e \We can define features ¢

e and determine weights 6

* Then, we can compute the
(log of the ) joint probability for
each realisation of the z;

logp(x | B) = qu x.)' 0. —log Z(0)

ceC
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A Simple Example

Using numbers, e.g.:

* The same graph can also be
interpreted as a binary MRF

* This a more specific
representation, but it is less
complex (and therefore more
efficient)

e |In Computer Vision, we almost
always use binary MRFs; they
are a specific case of general

| MRFs:

p(x) = E%Q(IL35‘2)%3(@1,$3)¢23($2,$3)¢24(332,$4)¢34(3?3,$4)¢35($3,CE5)
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Using Graphical Models

We can use a graphical model to do inference:
« We want to find arg max p(x)

« Some nodes in the graph are observed, for others
we want to find the posterior distribution

« Also, computing the local marginal distribution p(x )
at any node x, can be done using inference.

Question: How can inference be done with a
graphical model?

We will see that, when exploiting conditional
independences, we can do efficient inference.
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Example Application: Denoising

Noise-free image Noisy image (observation)

Aim: Recover the noise-free image from the noisy one

We model the original image with variables z; € {—1, 1}
and the noisy image with pixel values y; € {—1, 1}
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Example Application: Denoising

Noise-free image Noisy image (observation)

Aim: Recover the noise-free image from the noisy one

We model the original image with variables z; € {—1, 1}
and the noisy image with pixel values y; € {—1, 1}

We consider the true pixel vales as hidden or latent
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Example Application: Denoising

D4

" @

“Ising model"

ye

We define two simple edge features:

O(Ti,Yi) = T3y O(xi, ) = x5
These are multiplied by parameters g3 and 7:
log w(wza yz) — LY log w(xz, yz) — Nx;Y;
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Example Application: Denoising

D4

$i/

ye

With this, we can compute the joint:
p(x,y | n, 5 Hexp NTY; Hexp Brix;)
and its log:
log p(x,y | n,8) = nzxzyz - 52% z; — log(Z
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Example Application: Denoising
log p(x,y | n,8) = Uzl‘z'yi + 52%%’ — log(Z)
1 1,9

Our aim now is to find the hidden stétes z; such that
this log of the joint is maximal (or at least very high).

Simple approach is Iterated Conditional Modes (ICM):
1. Initialize all z; by corresponding y;
2. For all nodes z; :
1.setx; to +1 and to -1 and evaluate logp(x,y | n,8)
2. keep the value that gives higher log joint
This will keep or increase the joint in every step
The nodes can be visited in order or randomly
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Result of ICM

Theo

oise-free image

Result of ICM
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General Inference in MRFs

* |n general, we do not have such an easy model

* Therefore, we need more general inference
methods for MRF

* The major aim is to exploit sparsity in the
graphical model to make inference efficient
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Inference on a Chain

The joint probability is given by
1 |
p(x) = E‘{ﬁ’l,z(whIz)‘l;{’fz,s(ﬂfza1?3)‘1,1’":3,4(1’3,1?4)"1!"4,5(;’54,5175)

The marginal at x;is  plzs)=> > > ) px)

T o H €r5

In the general case with N nodes we have

1

[)(X) E 1;’1 ‘)(Il . l‘))"l‘i"ig,g(.’lrg, :1?3) <. 'l;{?j\r_l’!\r (.’l.’-N_l, ';L‘N)

and Z 3y Z.p(x)

Lop—1 L1
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Inference on a Chain

» This would mean KV computatlons! A more efficient
way is obtained by rearranging:

p(rs) = _LLLZU17 T1,22)¥2,3(T2, 3)¥3,4(23, 4)V1,5(24, T5)
= = 2?§ LZW 2 (@1, o) 3(w2, x3)W¥3,4(23, X4) Vs, 5(24, 5)
—ZG’23 Jﬂ ~L3 ZU1° »bl xr2) 2034 ~L3HL4 ZM ~L4,

£2 | | F4 J

l—l'a-(c 3 )« Vectors of size K _>u,.,3(;,;3_)
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Inference on a Chain

hal@ny)  Halea)  salsn)  pslon )

&1 Ln 1 L L |1 LN

In general, we have

| - -
p(l"n) — E Z 1},"-71—1.-71 (:En—la J/n) T Z ‘l;’v’l’g(:lll,;r-g) .- s
L L1 -

Ty 1

- ry
V

Mo (-T n)

Z Y1 (Tns Tng1) - Z YN-1,N(ZN-1,2N)
L LN

:L'n-{-'l
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Inference on a Chain

The messages u, and u; can be computed

recursively: i i
Ho (1n) — Z Wn— l,n.(12772.— 1s 3771) Z e

L1 _-:r.,l. 2 1

— Z Un—1,n(Tn—1, Tn)tha(Tn_1).

Ln—1 _ _
pa(xn) = Z Un,nt 1 (Tns Trngl) Z e

L1 _:Un—}-‘l i

— Z wn,nﬁ-l (xn s 41 )MJ (xn+1 ) .

Ln 41

Computation of u, starts at the first node and
computation of x4, starts at the last node.
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Inference on a Chain

He (m-n— 1 ) fo (.I’n) H3 ( Jf»n) H3 (‘Ln 1 )

&£ Ln 1 L L |l LN
- The first values of 1, and u, are:

tolez) = 3 ralen, a2 paen-1) = 3 vn-1n(@n-1,2N)
LN

. The partition function can be computed at any node:
4 = ZIJQ in)ﬂﬁ L)

 Overall, we have O(NK2) operations to compute the
marginal  p(z,,)
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Inference on a Chain

To compute local marginals:
.Compute and store all forward messages, (i (n).
-Compute and store all backward messages, js3(xn)
-Compute Z atanodex,: Z=)_ talem)pslem)

-Compute 1 |
pln) = o Ha(@n)s(en)

for all variables required.
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More General Graphs

The message-passing algorithm can be extended to
more general graphs:

Undirected Directed

Tree Tree Polytree

It Is then known as the
A special case of this is
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Factor Graphs

« The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

« A representation that generalizes directed and
undirected models is the

p(x) = plr1)p(r2)p(es|es, v2) f(x1, 22, 23) = p(w1)p(w2)p(T3 | T1,72)
Directed graph Factor graph
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Factor Graphs

« The Sum-product algorithm can be used to do
inference on undirected and directed graphs.

« A representation that generalizes directed and
undirected models is the

H4 iy I X o

1y 3
’(:f?(;lfl L2, Utg) f(ilfla L3, »Ls) — ’Q"r’(ib'l y L2, 1’3)
Undirected graph Factor graph
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Factor Graphs

Factor graphs 11

e can contain multiple factors
for the same nodes

 are more general than -
undirected graphs

 are bipartite, i.e. they consist
of two kinds of nodes and all
edges connect nodes of

different kind
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Factor Graphs

: L1 I3
e Directed trees convert to

tree-structured factor graphs /

* The same holds for T4
undirected trees

e Also: directed polytrees
convert to tree-structured T4 O) =
factor graphs Ja

 And: Local cycles in a
directed graph can be
removed by converting to a T4
factor graph
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The Sum-Product Algorithm

Assumptions:
e all variables are discrete
 the factor graph has a tree structure

The factor graph represents the joint distribution
as a product of factor nodes:

p(X) — H fs (Xs)

The marginal distribution at a given node x Is

p(z) =) p(x)

X\ T
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The Sum-Product Algorithm

For a given node x the joint
can be written as

Product of all

ThUS we have p Z H F a: X factors associated

x\z selle(x) with fg

Key insight: Sum and product can be exchanged!

H ZFZUX H f,—sz (T

sene(x) Xs sENG(z) \‘Messages from
factors to node x”
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The Sum-Product Algorithm

TN

\/::r pr—fa (T21)

Q The factors in the messages
w. «x) ©  can be factorized further:

L,

. i Fs(x, X)) = fs(x,21,...,20)G1(21, Xs,) ... Gpr(xps, X5y, )
G'm, ('T'm ) X ST )

The messages can then be computed as

ff. se(T) = Z Zfs T, X1, M) H Z Gm(Tm, Xs, )

’rI’LEne(fS)\LU Xsm

:Z...Zfs(x,xl,...,xM) H ,Ua:m—>f Tm)

meNe(fs)\x \
“Messages from

nodes to factors”
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The Sum-Product Algorithm

fr.

The factors G of the
neighboring nodes can
again be factorized further:

Ji

Fl(x'm.a -Xml) GM (xma XSm) — H Fl (xm7 Xml )
1ENE(xm )\ fs

This results in the exact same situation as above!
We can now recursively apply the derived rules:

Hoa— £, (Tm) = H Z E (@, Xim, )

lEN€(zm )\ fs Xm,

— H Hfr—xm, (I‘m)

lENE(xm )\ fs
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The Sum-Product Algorithm

Summary marginalization:

1.Consider the node x as a root note

2.Initialize the recursion at the leaf nodes as:
nrse(x)=1 (var) or p.,s(z) = f(z) (fac)
3.Propagate the messages from the leaves to the
root x

4.Propagate the messages back from the root to
the leaves

5.We can get the marginals at every node in the
graph by multiplying all incoming messages
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The Max-Sum Algorithm

Sum-product is used to find the marginal
distributions at every node, but:

How can we find the setting of all variables that
maximizes the joint probability? And what is the
value of that maximal probability?

Idea: use sum-product to find all marginals and
then report the value for each node x that
maximizes the marginal p(x)

However: this does not give the overall
maximum of the joint probability
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The Max-Sum Algorithm

Observation: the max-operator is distributive, just
like the multiplication used in sum-product:

max(ab, ac) = a max(b, c) if  a>0
Idea: use max instead of sum as above and
exchange it with the product

Chain exarqple:

m}z}xp(x) = 7 max... max|y 2(1,22) .. . UN—1.N(TN-1,TN)]
1
— E II;}&X [¢1 2(1‘1, 332) [ . . 1MNax wN—l,N(:EN—lv xN)H

Message passing can be used as above!
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The Max-Sum Algorithm

To find the maximum value of p(x), we start again
at the leaves and propagate to the root.

Two problems:

e N0 summation, but many multiplications; this
leads to numerical instability (very small values)

* when propagating back, multiple configurations

of x can maximize p(x), leading to wrong
assignments of the overall maximum

Solution to the first:
Transform everything into log-space and use sums
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The Max-Sum Algorithm

Solution to the second problem:

Keep track of the arg max in the forward step,
l.e. store at each node which value was
responsible for the maximum:

¢(ry) = arg max|In fn—l,n(ajn—lv Tn) + Hxp_1—fr_1n (Tn))

Ln—1

Then, in the back-tracking step we can recover
the arg max by recursive substitution of:

Tpor = ¢y )
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Sum-Product Inference in General Graphical Models

1.Convert graph (directed or undirected) into a
factor graph (there are no cycles)

2.1f the goal is to marginalize at node x, then
consider x as a root node
3.Initialize the recursion at the leaf nodes as:
nisz(x) =1 (var) or pe—ys(x) = f(z) (fac)
4.Propagate messages from the leaves to x

5.Propagate messages from x to the leaves

6.0btain marginals at every node by multiplying
all iIncoming messages
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Other Inference Algorithms

* Max-Sum algorithm: used to maximize the joint
probability of all variables (no marginalization)

e Junction Tree algorithm: exact inference for
general graphs (even with loops)

e | oopy belief propagation: approximate
inference on general graphs (more efficient)

Special kind of undirected GM:
e Conditional Random fields (e.g.: classification)
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Conditional Random Fields

« Another kind of undirected graphical model is known
as Conditional Random Field (CRF).

« CRFs are used for classification where labels are
represented as discrete random variables y and
features as continuous random variables x

« A CRF represents the conditional probability

v e dcxeyo;w)
I)(y | x, W) T Z;y! H(:‘ (;')(;‘r(X(‘), yz--, W)

where w are parameters learned from training data.
« CRFs are discriminative and MRFs are generative
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Conditional Random Fields

Derivation of the formula for CRFs:

p(..Y:X ‘ W) _ p(yvxl W) _ llC(J)U(XC:yc;W) 4
p(x | w) Z;y' ply,x|w) Z Z;y’ [[ pc(xcye:w)

In the training phase, we compute parameters w that
maximize the posterior:

A

W = argmaxp(w | x,y) = arg maxp(y | x, w)p(w)

Py | x,w) =

where (x,y) is the training data and p(w) is a Gaussian
prior. In the inference phase we maximize

argmaxp(y” | X", w)
y*
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CRF Training

We minimize the negative log-posterior:

w* =argmin{—Inp(w | x*,¥y")} = argmin{ — lnp(y™  x*,w) — lnp(w)}
W W

Computing the likelinood is intractable, as we have to

compute the partition function for each w. We can
approximate the likelihood using pseudo-likelihood:

p(y" | x*,w):f[m/y?‘\g\/l(y;‘),x*,w)

Markov blanket C:: All cliques containing y,

/

ply; | M(yi ), x"\w) =

where

e, ¢oi (X6, ui y6,5 W)
Zy; Hc, (/')C(XE,. ; y{a ya ;W)
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Pseudo Likelihood
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Pseudo Likelihood

Pseudo-likelihood is computed only on the Markov
blanket of y; and its corresp. feature nodes.
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Potential Functions

. The only requirement for the potential functions is
that they are positive. We achieve that with:

do(xe,yo,w) = exp(w! f(xe,yo))
Where f is a compatibility function that is large if the
labels y - fit well to the features x,..

. This is called the log-linear model.

 The function f'can be, e.g. a local classifier
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CRF Training and Inference

Training:
« Using pseudo-likelihood, training is efficient. We have
to minimize:
L(w) = —Ipl(y™ | x*, w) 212wTw
/ a \
Log-pseudo-likelihood Gaussian prior

« This is a convex function that can be minimized using
gradient descent

Inference:

« Only approximatively, e.g. using loopy belief
propagation
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Summary

e Undirected models (aka Markov random fields)
provide an intuitive representation of conditional
iIndependence

* An MRF Is defined as a factorization over
cligue potentials and normalized globally

* Directed and undirected models have different
representative power (no simple “containment”)

¢ Inference on undirected Markov chains is
efficient using message passing

* Factor graphs are more general; exact inference
can be done efficiently using sum-product
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