7. Sequential Data

Bayes Filter (Rep.)

We can describe the overall process using a Dynamic Bayes Network:

- This incorporates the following Markov assumptions:

$$
\begin{aligned}
& p\left(z_{t} \mid x_{0: t}, u_{1: t}, z_{1: t}\right)=p\left(z_{t} \mid x_{t}\right) \text { (measurement) } \\
& p\left(x_{t} \mid x_{0: t-1}, u_{1: t}, z_{1: t}\right)=p\left(x_{t} \mid x_{t-1}, u_{t}\right) \quad \text { (state) }
\end{aligned}
$$

Bayes Filter Without Actions

Removing the action variables we obtain:

- This incorporates the following Markov assumptions:

$$
\begin{array}{lc}
P\left(z_{t} \mid x_{0: t,}\right. & \left.z_{1: t}\right) \\
P\left(x_{t} \mid x_{0: t-1,}\right. & \left.z_{1: t}\right) \\
P\left(z_{t} \mid x_{t}\right) & =P\left(x_{t} \mid x_{t-1}\right) \\
\begin{array}{c}
\text { Machine Learning for } \\
\text { Computer Vision }
\end{array} & 3
\end{array}
$$

A Model for Sequential Data

- Observations in sequential data should not be modeled as independent variables such as:

- Examples: weather forecast, speech, handwritten text, etc.
- The observation at time t depends on the observation(s) of (an) earlier time step(s):

A Model for Sequential Data

- The joint distribution is therefore (d-sep):

$$
p\left(\mathbf{z}_{1} \ldots \mathbf{z}_{n}\right)=p\left(\mathbf{z}_{1}\right) \prod_{i=2}^{n} p\left(\mathbf{z}_{i} \mid \mathbf{z}_{i-1}\right)
$$

- However: often data depends on several earlier observations (not just one)

A Model for Sequential Data

- Problem: number of stored parameters grows exponentially with the order of the Markov chain
- Question: can we model dependency of all previous observations with a limited number of parameters?

A Model for Sequential Data

Idea: Introduce hidden (unobserved) variables:

A Model for Sequential Data

Idea: Introduce hidden (unobserved) variables:

Now we have: $\operatorname{dsep}\left(\mathbf{x}_{n},\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-2}\right\}, \mathbf{x}_{n-1}\right)$

$$
\Leftrightarrow p\left(\mathbf{x}_{n} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{n-2}, \mathbf{x}_{n-1}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)
$$

But:
$\neg \operatorname{dsep}\left(\mathbf{z}_{n},\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}\right\}, \mathbf{z}_{n-1}\right)$

$$
\Leftrightarrow p\left(\mathbf{z}_{n} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{n-2}, \mathbf{z}_{n-1}\right) \neq p\left(\mathbf{z}_{n} \mid \mathbf{z}_{n-1}\right)
$$

And: number of parameters is $n K(K-1)+$ const.

Example

- Place recognition for mobile robots
- 3 different states: corridor, room, doorway
- Problem: misclassifications
- Idea: use information from previous time step

General Formulation of an HMM

1.Discrete random variables

- Observation variables: $\left\{z_{n}\right\}, n=1 . . N$
- Discrete state variables (unobservable): $\left\{x_{n}\right\}, n=1 . . N$
- Number of states $K: x_{n} \in\{1 \ldots K\}$
2.Transition model $p\left(x_{i} \mid x_{i-1}\right)$

Model Parameters
θ

- Markov assumption (x_{i} only depends on x_{i-}
- Represented as a $K \times K$ transition matrix A
- Initial probability: $p\left(x_{0}\right)$ repr. as $\pi_{1}, \pi_{2}, \pi_{3}$
3.Observation model $p\left(z_{i} \mid x_{i}\right)$ with parameters φ
- Observation only depends on the current state
- Example: output of a "local" place classifier

The Trellis Representation

time

Application Example (1)

- Given an observation sequence $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3} \ldots$
- Assume that the model parameters
$\theta=(\mathrm{A}, \pi, \varphi)$ are known
- What is the probability that the given observation sequence is actually observed under this model, i.e. the data likelihood $p(Z \mid \theta)$?
- If we are given several different models, we can choose the one with highest probability
- Expressed as a supervised learning problem, this can be interpreted as the inference step (classification step)

Application Example (2)

Based on the data likelihood we can solve two different kinds of problems:

- Filtering: computes $p\left(\mathbf{x}_{n} \mid \mathbf{z}_{1: n}\right)$, i.e. state probability only based on previous observations
- Smoothing: computes $p\left(\mathbf{x}_{n} \mid \mathbf{z}_{1: N}\right)$, state probability based on all observations (including those from the future)

Application Example (3)

- Given an observation sequence $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3} \ldots$
- Assume that the model parameters $\theta=(A, \pi, \varphi)$ are known
- What is the state sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \ldots$ that explains best the given observation sequence?
- In the case of place recognition: which is the sequence of truly visited places that explains best the sequence of obtained place labels (classifications)?

Application Example (4)

- Given an observation sequence $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3} \ldots$
- What are the optimal model parameters $\theta=(\mathrm{A}, \pi, \varphi)$?
- This can be interpreted as the training step
- It is in general the most difficult problem

Summary: 4 Operations on HMMs

1. Compute data likelihood $p(Z \mid \theta)$ from a known model

- Can be computed with the forward algorithm

2. Filtering or Smoothing of the state probability

- Filtering: forward algorithm
- Smoothing: forward-backward algorithm

3. Compute optimal state sequence with a known model

- Can be computed with the Viterbi-Algorithm

4. Learn model parameters for an observation sequence

- Can be computed using Expectation-Maximization (or Baum-Welch)

The Forward Algorithm

Goal: compute $p(Z \mid \theta)$ (we drop θ in the following)

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\sum_{\mathbf{x}_{n}} p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)=: \sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right)
$$

The Forward Algorithm

Goal: compute $p(Z \mid \theta)$ (we drop θ in the following)

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\sum_{\mathbf{x}_{n}} p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)=: \sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right)
$$

We can calculate α recursively:

$$
\alpha\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{x}_{n}\right) \sum_{\mathbf{x}_{n-1}} \alpha\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)
$$

The Forward Algorithm

Goal: compute $p(Z \mid \theta)$ (we drop θ in the following)

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\sum_{\mathbf{x}_{n}} p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)=: \sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right)
$$

We can calculate α recursively:

$$
\alpha\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{x}_{n}\right) \sum_{\mathbf{x}_{n-1}} \alpha\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)
$$

This is (almost) the same recursive formula as we had in the first lecture!

The Forward Algorithm

Goal: compute $p(Z \mid \theta)$ (we drop θ in the following)

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\sum_{\mathbf{x}_{n}} p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)=: \sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right)
$$

We can calculate α recursively:

$$
\alpha\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{x}_{n}\right) \sum_{\mathbf{x}_{n-1}} \alpha\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)
$$

This is (almost) the same recursive formula as we had in the first lecture!
Filtering: $\quad p\left(\mathbf{x}_{n} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)=\frac{p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)}{p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)}=\frac{\alpha\left(\mathbf{x}_{n}\right)}{\sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right)}$

The Forward-Backward Algorithm

- As before we set $\alpha\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)$
- We also define $\beta\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right)$

$$
\text { e.g. } n=5 \text { : }
$$

The Forward-Backward Algorithm

- As before we set $\alpha\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)$
- We also define $\beta\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right)$
- This can be recursively computed (backwards):

$$
\beta\left(\mathbf{x}_{n-1}\right)=p\left(\mathbf{z}_{n}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n-1}\right)
$$

$$
\begin{aligned}
& =\sum_{\mathbf{x}_{n}} p\left(\mathbf{x}_{n}, \mathbf{z}_{n}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n-1}\right) \\
& =\sum_{\mathbf{x}_{n}} p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}, \not \mathbf{y n}_{n}, \mathbf{y}_{n-1}\right) p\left(\mathbf{x}_{n}, \mathbf{z}_{n} \mid \mathbf{x}_{n-1}\right) \\
& =\sum_{\mathbf{x}_{n}} p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right) p\left(\mathbf{z}_{n} \mid \mathbf{y} / n-1, \mathbf{x}_{n}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right) \\
& =\sum_{\mathbf{x}_{n}} \beta\left(\mathbf{x}_{n}\right) p\left(\mathbf{z}_{n} \mid \mathbf{x}_{n}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)
\end{aligned}
$$

The Forward-Backward Algorithm

- As before we set $\alpha\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right)$
- We also define $\beta\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right)$
- This can be recursively computed (backwards):

$$
\beta\left(\mathbf{x}_{n}\right)=\sum_{\mathbf{x}_{n+1}} \beta\left(\mathbf{x}_{n+1}\right) p\left(\mathbf{z}_{n+1} \mid \mathbf{x}_{n+1}\right) p\left(\mathbf{x}_{n+1} \mid \mathbf{x}_{n}\right)
$$

- This is also known as the message-passing algorithm ("sum-product")!
- forward messages α_{n} (vector of length K)
- backward messages β_{n} (vector of length K)

Smoothing with Forward-Backward

First we compute $p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$:

$$
\begin{aligned}
p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right) & =p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right) p\left(\mathbf{x}_{n}\right) \\
& =p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n} \mid \mathbf{x}_{n}\right) p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right) p\left(\mathbf{x}_{n}\right) \\
& =p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{n}, \mathbf{x}_{n}\right) p\left(\mathbf{z}_{n+1}, \ldots, \mathbf{z}_{N} \mid \mathbf{x}_{n}\right) \\
& =\alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)
\end{aligned}
$$

Smoothing with Forward-Backward

First we compute $p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$:
$p\left(\mathbf{x}_{n}, \mathbf{Z}_{1}, \ldots, \mathbf{z}_{N}\right)=\alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)$
with that we can compute $p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$:

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\sum_{\mathbf{x}_{n}} p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)
$$

Smoothing with Forward-Backward

First we compute $p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$:
$p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)$
with that we can compute $p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$:

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\sum_{\mathbf{x}_{n}} p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)
$$

and finally:

$$
p\left(\mathbf{x}_{n} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)=\frac{p\left(\mathbf{x}_{n}, \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)}{p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)}=\frac{\alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)}{\sum_{\mathbf{x}_{n}} \alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right)}
$$

2. Computing the Most Likely States

- Goal: find a state sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} \ldots$ that maximizes the probability $p(X, Z \mid \theta)$
- Define $\delta\left(\mathbf{x}_{n}\right)=\max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}} p\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n} \mid \mathbf{z}_{1}, \ldots \mathbf{z}_{n}\right)$

This is the probability of state j by taking the most probable path.

2. Computing the Most Likely States

- Goal: find a state sequence $x_{1}, x_{2}, x_{3} \ldots$ that maximizes the probability $\mathrm{p}(\mathrm{X}, \mathrm{Z} \mid \theta)$
- Define $\delta\left(\mathbf{x}_{n}\right)=\max _{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}} p\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n} \mid \mathbf{z}_{1}, \ldots \mathbf{z}_{n}\right)$

This can be computed recursively:

$$
\delta\left(\mathbf{x}_{n}\right)=\max _{\mathbf{x}_{n-1}} \delta\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right) p\left(\mathbf{z}_{n}, \mid \mathbf{x}_{n}\right)
$$

we also have to compute the argmax:

$$
\psi\left(\mathbf{x}_{n}\right)=\arg \max _{\mathbf{x}_{n-1}} \delta\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right) p\left(\mathbf{z}_{n}, \mid \mathbf{x}_{n}\right)
$$

The Viterbi algorithm

- Initialize:
- $\delta\left(\mathbf{x}_{0}\right)=p\left(\mathbf{x}_{0}\right) p\left(\mathbf{z}_{0} \mid \mathbf{x}_{0}\right)$
- $\psi\left(\mathbf{x}_{0}\right)=0$
- Compute recursively for $n=1 \ldots N$:
- $\delta\left(\mathbf{x}_{n}\right)=p\left(\mathbf{z}_{n} \mid \mathbf{x}_{n}\right) \max _{x_{n-1}}\left[\delta\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)\right]$
- $\psi\left(\mathbf{x}_{n}\right)=\underset{x_{n-1}}{\operatorname{argmax}}\left[\delta\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right)\right]$
- On termination:
- $p(\mathrm{Z}, \mathrm{X} \mid \theta)=\max _{x_{N}} \delta\left(x_{N}\right)$
- $\mathrm{x}_{N}^{\star}=\underset{x_{N}}{\operatorname{argmax}} \delta\left(x_{N}\right)$
- Backtracking:
- $\mathrm{x}_{n}^{\star}=\psi\left(x_{n+1}\right)$

3. Learning the Model Parameters

- Given an observation sequence $\mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{3} \ldots$
- Find optimal model parameters $\theta=\pi, A, \varphi$
- We need to maximize the likelihood $p(Z \mid \theta)$
- Can not be solved in closed form
- Iterative algorithm "Baum-Welch": a special case of the Expectation Maximization (EM) algorithm

3. Learning the Model Parameters

- Idea: instead of maximizing

$$
p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N} \mid \theta\right)=\sum_{X} p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \theta\right)
$$

- we maximize the expected log likelihood:

$$
\sum_{X} p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}, \theta\right) \log p\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}, \mathbf{x}_{1}, \ldots, \mathbf{x}_{N} \mid \theta\right)
$$

- it can be shown that this is a lower bound of the actual log-likelihood $p(Z \mid \theta)$
- this is the general idea of the ExpectationMaximization (EM) algorithm

The Baum-Welsh algorithm

- E-Step (assuming we know π, A, φ, i.e. $\left.\theta^{\text {old }}\right)$
- Define the posterior probability of being in state i at step k:
- Define $\gamma\left(\mathbf{x}_{n}\right)=p\left(\mathbf{x}_{n} \mid Z\right)$

The Baum-Welsh algorithm

- E-Step (assuming we know π, A, φ, i.e. $\theta^{\text {old }}$)
- Define the posterior probability of being in state i at step k:
- Define $\gamma\left(\mathbf{x}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$
- It follows that $\gamma\left(\mathbf{x}_{n}\right)=\alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right) / p(Z)$

The Baum-Welsh algorithm

- E-Step (assuming we know π, A, φ, i.e. $\theta^{\text {old }}$)
- Define the posterior probability of being in state i at step k:
- Define $\gamma\left(\mathbf{x}_{n}\right)=p\left(\mathbf{x}_{n} \mid \mathbf{z}_{1}, \ldots, \mathbf{z}_{n}\right)$
- It follows that $\gamma\left(\mathbf{x}_{n}\right)=\alpha\left(\mathbf{x}_{n}\right) \beta\left(\mathbf{x}_{n}\right) / p(Z)$
- Define $\xi\left(\mathbf{x}_{n-1}, \mathbf{x}_{n}\right)=p\left(\mathbf{x}_{n-1}, \mathbf{x}_{n} \mid Z\right)$
- It follows that
$\xi\left(\mathbf{x}_{n-1}, \mathbf{x}_{n}\right)=\alpha\left(\mathbf{x}_{n-1}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n}\right) p\left(\mathbf{x}_{n} \mid \mathbf{x}_{n-1}\right) \beta\left(\mathbf{x}_{n}\right) / p(\mathrm{Z})$

The Baum-Welsh algorithm

- Note: $\gamma\left(\mathbf{x}_{n}\right)$ is a vector of length K; each entry $\gamma_{k}\left(\mathbf{x}_{n}\right)$ represents the probability that the state at time n is equal to $k \in\{1, \ldots K\}$
- Thus: The expected number of transitions from state k in the sequence X is

$$
\sum_{i=1}^{N} \gamma_{k}\left(\mathbf{x}_{i}\right)
$$

The Baum-Welsh algorithm

- Note: $\gamma\left(\mathbf{x}_{n}\right)$ is a vector of length K; each entry $\gamma_{k}\left(\mathbf{x}_{n}\right)$ represents the probability that the state at time n is equal to $k \in\{1, \ldots K\}$
- Thus: The expected number of transitions from state k in the sequence X is $\sum_{i=1}^{N} \gamma_{k}\left(\mathbf{x}_{i}\right)$
- Similarly: The expected number of transitions from state j to state k in the sequence X is

$$
\sum_{i=1}^{N-1} \xi_{j, k}\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right)
$$

The Baum-Welsh algorithm

- With that we can compute new values for π, A, φ :

$$
\begin{gathered}
\pi_{k}=\gamma_{k}\left(\mathbf{x}_{1}\right) \\
A_{j, k}=\frac{\sum_{i=1}^{N-1} \xi_{j, k}\left(\mathbf{x}_{i}, \mathbf{x}_{i+1}\right)}{\sum_{i=1}^{N} \gamma_{j}\left(\mathbf{x}_{i}\right)} \quad \varphi_{j, k}=\frac{\sum_{i=1}^{N} \gamma_{j}\left(\mathbf{x}_{i}\right) \delta_{k, \mathbf{x}_{t}}}{\sum_{i=1}^{N} \gamma_{j}\left(\mathbf{x}_{i}\right)}
\end{gathered}
$$

here, we need forward and backward step!

- This is done until the likelihood does not increase anymore (convergence)

The Baum-Welsh Algorithm - Summary

- Start with an initial estimate of $\theta=(\pi, A, \varphi)$ e.g. uniformly and k-means for φ
- Compute messages (E-Step)
- Compute new $\theta=(\pi, A, \varphi)$ (M-step)
- Iterate E and M until convergence
- In each iteration one full application of the forward-backward algorithm is performed
- Result gives a local optimum
- For other local optima, the algorithm needs to be started again with new initialization

Summary

- HMMs are a way to model sequential data
- They assume discrete states
- Three possible operations can be performed with HMMs:
- Data likelihood, given a model and an observation
- Most likely state sequence, given a model and an observation
- Optimal Model parameters, given an observation
- Appropriate scaling solves numerical problems
- HMMs are widely used, e.g. in speech recognition

