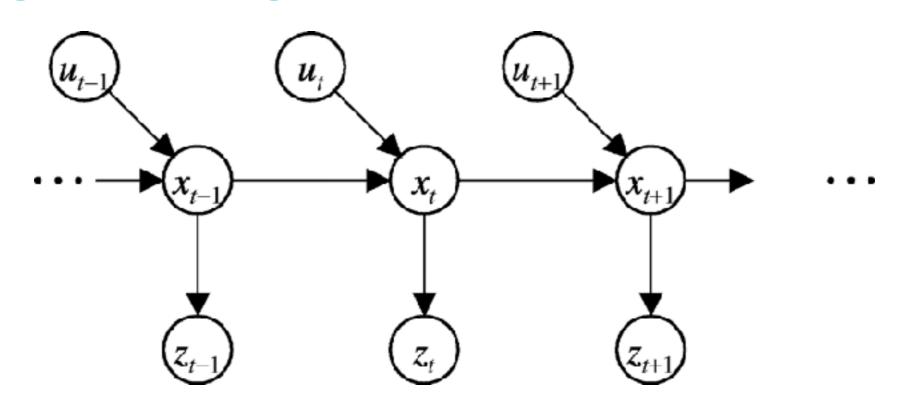
7. Sequential Data

Bayes Filter (Rep.)

We can describe the overall process using a **Dynamic Bayes Network**:

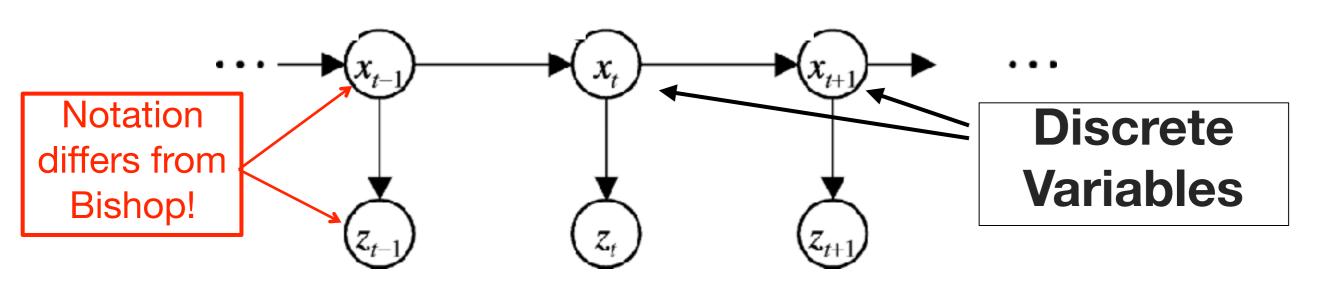


This incorporates the following Markov assumptions:

$$p(z_t \mid x_{0:t}, u_{1:t}, z_{1:t}) = p(z_t \mid x_t)$$
 (measurement)
$$p(x_t \mid x_{0:t-1}, u_{1:t}, z_{1:t}) = p(x_t \mid x_{t-1}, u_t)$$
 (state)

Bayes Filter Without Actions

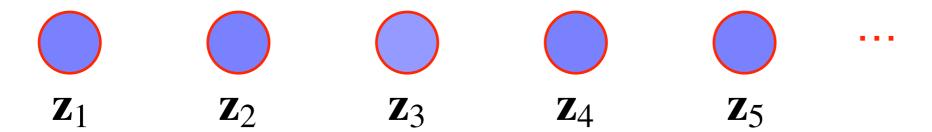
Removing the action variables we obtain:



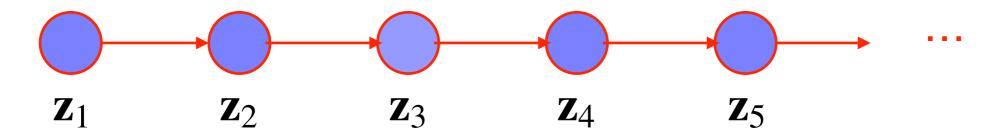
This incorporates the following Markov assumptions:

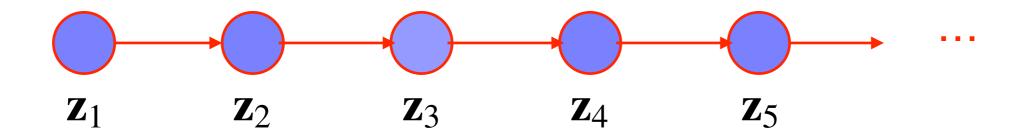
$$p(z_t \mid x_{0:t}, \qquad z_{1:t}) = p(z_t \mid x_t)$$
 (measurement) $p(x_t \mid x_{0:t-1}, \qquad z_{1:t}) = p(x_t \mid x_{t-1})$ (state)

 Observations in sequential data should not be modeled as independent variables such as:



- Examples: weather forecast, speech, handwritten text, etc.
- The observation at time *t* depends on the observation(s) of (an) earlier time step(s):

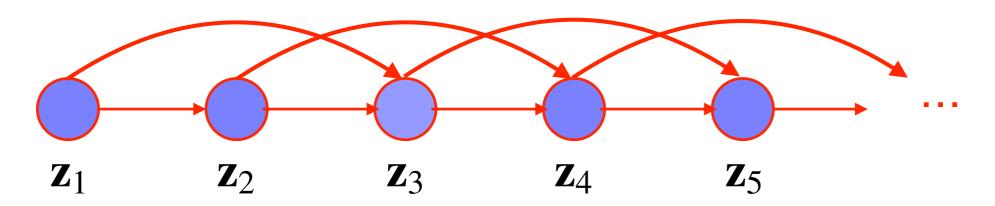


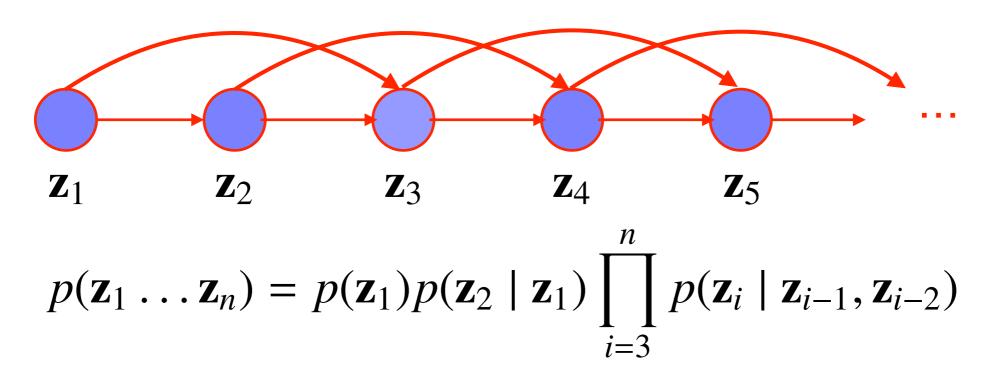


The joint distribution is therefore (d-sep):

$$p(\mathbf{z}_1 \dots \mathbf{z}_n) = p(\mathbf{z}_1) \prod_{i=2}^n p(\mathbf{z}_i \mid \mathbf{z}_{i-1})$$

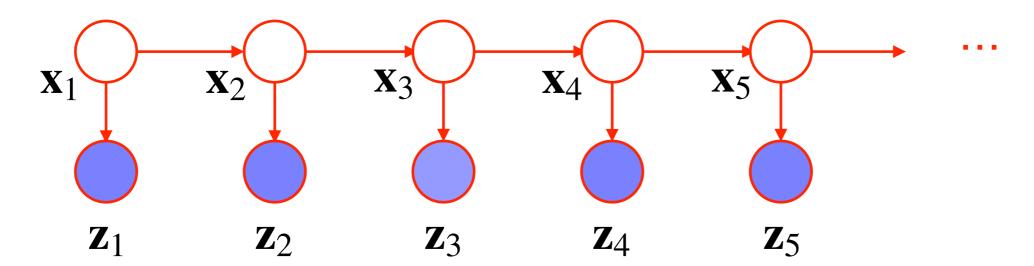
 However: often data depends on several earlier observations (not just one)



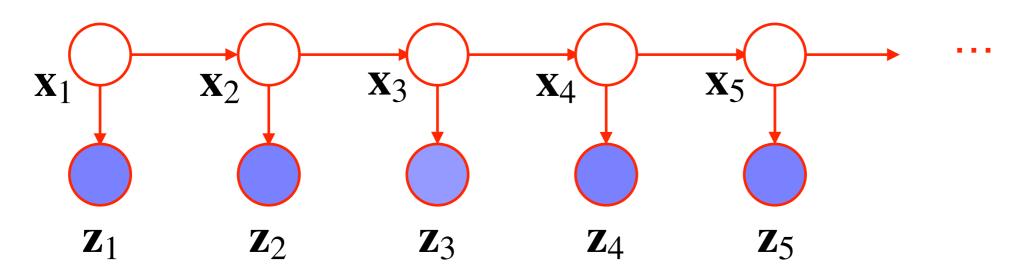


- Problem: number of stored parameters grows exponentially with the order of the Markov chain
- Question: can we model dependency of all previous observations with a limited number of parameters?

Idea: Introduce hidden (unobserved) variables:



Idea: Introduce hidden (unobserved) variables:



Now we have: $dsep(\mathbf{x}_n, {\{\mathbf{x}_1, ..., \mathbf{x}_{n-2}\}}, \mathbf{x}_{n-1})$

$$\Leftrightarrow p(\mathbf{x}_n \mid \mathbf{x}_1, \dots, \mathbf{x}_{n-2}, \mathbf{x}_{n-1}) = p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

But: $\neg dsep(\mathbf{z}_n, \{\mathbf{z}_1, \dots, \mathbf{z}_{n-2}\}, \mathbf{z}_{n-1})$

$$\Leftrightarrow p(\mathbf{z}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_{n-2}, \mathbf{z}_{n-1}) \neq p(\mathbf{z}_n \mid \mathbf{z}_{n-1})$$

And: number of parameters is nK(K-1) + const.

Example

- Place recognition for mobile robots
- 3 different states: corridor, room, doorway
- Problem: misclassifications
- Idea: use information from previous time step



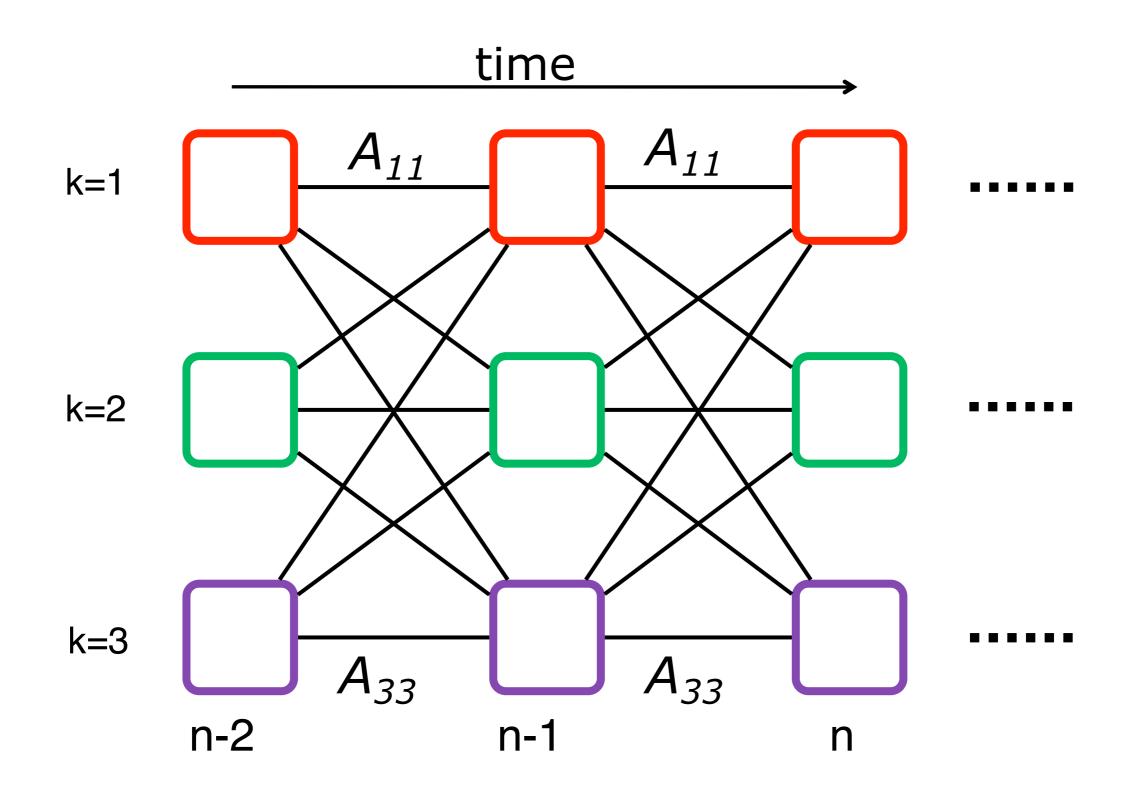
General Formulation of an HMM

- 1.Discrete random variables
 - Observation variables: $\{z_n\}$, n = 1..N
 - Discrete **state** variables (unobservable): $\{x_n\}$, n = 1..N
 - Number of states $K: x_n \in \{1...K\}$

Model Parameters θ

- 2. Transition model $p(x_i | x_{i-1})$
 - Markov assumption (x_i only depends on x_i)
 - Represented as a $K \times K$ transition matrix A
 - Initial probability: $p(x_0)$ repr. as π_1, π_2, π_3
- 3. Observation model $p(z_i|x_i)$ with parameter φ
 - Observation only depends on the current state
 - Example: output of a "local" place classifier

The Trellis Representation



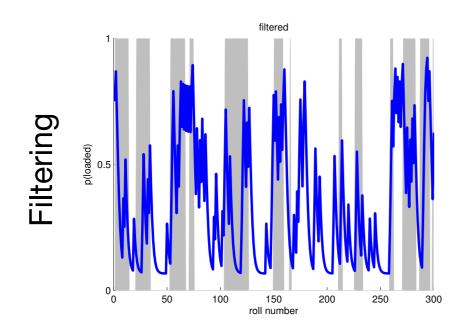
Application Example (1)

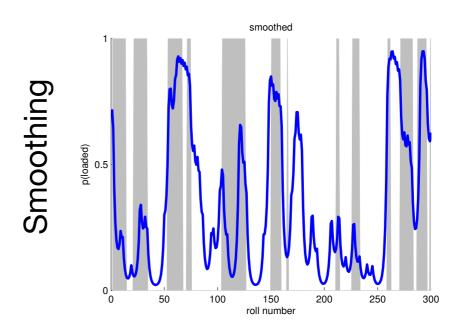
- Given an observation sequence $z_1, z_2, z_3...$
- Assume that the model parameters $\theta = (A, \pi, \phi)$ are known
- What is the probability that the given observation sequence is actually observed under this model, i.e. the **data likelihood** $p(Z|\theta)$?
- If we are given several different models, we can choose the one with highest probability
- Expressed as a supervised learning problem, this can be interpreted as the inference step (classification step)

Application Example (2)

Based on the data likelihood we can solve two different kinds of problems:

- Filtering: computes $p(\mathbf{x}_n \mid \mathbf{z}_{1:n})$, i.e. state probability only based on previous observations
- Smoothing: computes $p(\mathbf{x}_n \mid \mathbf{z}_{1:N})$, state probability based on **all** observations (including those from the future)





Application Example (3)

- Given an observation sequence z₁,z₂,z₃...
- Assume that the model parameters $\theta = (A, \pi, \varphi)$ are known
- What is the state sequence x₁,x₂,x₃... that
 explains best the given observation sequence?
- In the case of place recognition: which is the sequence of truly visited places that explains best the sequence of obtained place labels (classifications)?

Application Example (4)

- Given an observation sequence z₁,z₂,z₃...
- What are the optimal model parameters $\theta = (A, \pi, \phi)$?
- This can be interpreted as the training step
- It is in general the most difficult problem

Summary: 4 Operations on HMMs

- 1. Compute data likelihood $p(Z|\theta)$ from a known model
 - Can be computed with the forward algorithm
- 2. Filtering or Smoothing of the state probability
 - Filtering: forward algorithm
 - Smoothing: forward-backward algorithm
- 3. Compute optimal state sequence with a known model
 - Can be computed with the Viterbi-Algorithm
- 4. Learn model parameters for an observation sequence
 - Can be computed using Expectation-Maximization (or Baum-Welch)

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n)=\sum_{\mathbf{x}_n}p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n)=:\sum_{\mathbf{x}_n}\alpha(\mathbf{x}_n)$$

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n)=\sum_{\mathbf{x}_n}p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n)=:\sum_{\mathbf{x}_n}\alpha(\mathbf{x}_n)$$

We can calculate α recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n)=\sum_{\mathbf{x}_n}p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n)=:\sum_{\mathbf{x}_n}\alpha(\mathbf{x}_n)$$

We can calculate α recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

This is (almost) the same recursive formula as we had in the first lecture!

Goal: compute $p(Z|\theta)$ (we drop θ in the following)

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_n)=\sum_{\mathbf{x}_n}p(\mathbf{z}_1,\ldots,\mathbf{z}_n,\mathbf{x}_n)=:\sum_{\mathbf{x}_n}\alpha(\mathbf{x}_n)$$

We can calculate α recursively:

$$\alpha(\mathbf{x}_n) = p(\mathbf{z}_n \mid \mathbf{x}_n) \sum_{\mathbf{x}_{n-1}} \alpha(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

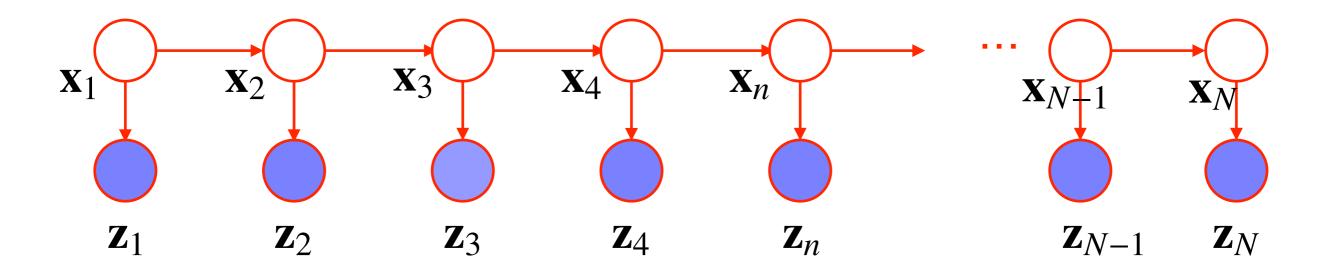
This is (almost) the same recursive formula as we had in the first lecture!

Filtering:
$$p(\mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_n) = \frac{p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)}{p(\mathbf{z}_1, \dots, \mathbf{z}_n)} = \frac{\alpha(\mathbf{x}_n)}{\sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)}$$

The Forward-Backward Algorithm

- As before we set $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$

e.g. n = 5:



The Forward-Backward Algorithm

- As before we set $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$
- This can be recursively computed (backwards):

$$\beta(\mathbf{x}_{n-1}) = p(\mathbf{z}_n, \dots, \mathbf{z}_N \mid \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{x}_n, \mathbf{z}_n, \dots, \mathbf{z}_N \mid \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n, \mathbf{z}_n, \mathbf{x}_{n-1}) p(\mathbf{x}_n, \mathbf{z}_n \mid \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n) p(\mathbf{z}_n \mid \mathbf{x}_{n-1}, \mathbf{x}_n) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

$$= \sum_{\mathbf{x}_n} \beta(\mathbf{x}_n) p(\mathbf{z}_n \mid \mathbf{x}_n) p(\mathbf{x}_n \mid \mathbf{x}_{n-1})$$

The Forward-Backward Algorithm

- As before we set $\alpha(\mathbf{x}_n) = p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n)$
- We also define $\beta(\mathbf{x}_n) = p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$
- This can be recursively computed (backwards):

$$\beta(\mathbf{x}_n) = \sum_{\mathbf{x}_{n+1}} \beta(\mathbf{x}_{n+1}) p(\mathbf{z}_{n+1} \mid \mathbf{x}_{n+1}) p(\mathbf{x}_{n+1} \mid \mathbf{x}_n)$$

- This is also known as the message-passing algorithm ("sum-product")!
 - forward messages α_n (vector of length K)
 - backward messages β_n (vector of length K)

Smoothing with Forward-Backward

First we compute $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$:

$$p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N) = p(\mathbf{z}_1, \dots, \mathbf{z}_N \mid \mathbf{x}_n) p(\mathbf{x}_n)$$

$$= p(\mathbf{z}_1, \dots, \mathbf{z}_n \mid \mathbf{x}_n) p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n) p(\mathbf{x}_n)$$

$$= p(\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{x}_n) p(\mathbf{z}_{n+1}, \dots, \mathbf{z}_N \mid \mathbf{x}_n)$$

$$= \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n)$$

Smoothing with Forward-Backward

First we compute $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$:

$$p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N) = \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

with that we can compute $p(\mathbf{z}_1, \dots, \mathbf{z}_N)$:

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N)=\sum_{\mathbf{x}_n}p(\mathbf{x}_n,\mathbf{z}_1,\ldots,\mathbf{z}_N)=\sum_{\mathbf{x}_n}\alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

Smoothing with Forward-Backward

First we compute $p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)$:

$$p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N) = \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

with that we can compute $p(\mathbf{z}_1, \dots, \mathbf{z}_N)$:

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N)=\sum_{\mathbf{x}_n}p(\mathbf{x}_n,\mathbf{z}_1,\ldots,\mathbf{z}_N)=\sum_{\mathbf{x}_n}\alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)$$

and finally:

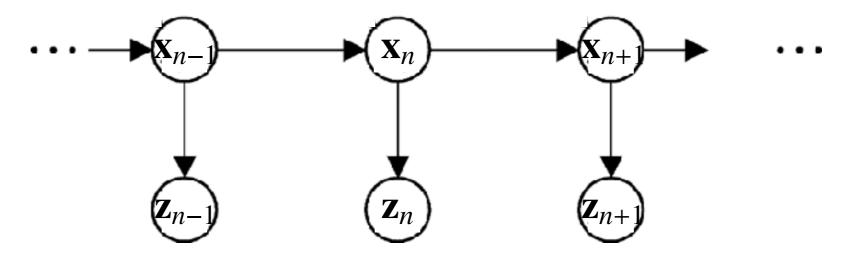
$$p(\mathbf{x}_n \mid \mathbf{z}_1, \dots, \mathbf{z}_N) = \frac{p(\mathbf{x}_n, \mathbf{z}_1, \dots, \mathbf{z}_N)}{p(\mathbf{z}_1, \dots, \mathbf{z}_N)} = \frac{\alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)}{\sum_{\mathbf{x}_n} \alpha(\mathbf{x}_n)\beta(\mathbf{x}_n)}$$

2. Computing the Most Likely States

• Goal: find a state sequence $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3...$ that maximizes the probability $p(X, Z|\theta)$

• Define
$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_1,...,\mathbf{x}_{n-1}} p(\mathbf{x}_1,...\mathbf{x}_n \mid \mathbf{z}_1,...\mathbf{z}_n)$$

This is the probability of state *j* by taking the most probable path.



2. Computing the Most Likely States

• Goal: find a state sequence $x_1, x_2, x_3...$ that maximizes the probability $p(X,Z|\theta)$

• Define
$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_1, \dots, \mathbf{x}_{n-1}} p(\mathbf{x}_1, \dots \mathbf{x}_n \mid \mathbf{z}_1, \dots \mathbf{z}_n)$$

This can be computed recursively:

$$\delta(\mathbf{x}_n) = \max_{\mathbf{x}_{n-1}} \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1}) p(\mathbf{z}_n, \mid \mathbf{x}_n)$$

we also have to compute the argmax:

$$\psi(\mathbf{x}_n) = \arg\max_{\mathbf{x}_{n-1}} \delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n \mid \mathbf{x}_{n-1}) p(\mathbf{z}_n, \mid \mathbf{x}_n)$$

The Viterbi algorithm

- Initialize:
 - $\delta(\mathbf{x}_0) = p(\mathbf{x}_0) p(\mathbf{z}_0 \mid \mathbf{x}_0)$
 - $\psi(\mathbf{x}_0) = 0$
- Compute recursively for n=1...N:
 - $\delta(\mathbf{x}_n) = p(\mathbf{z}_n | \mathbf{x}_n) \max_{\mathbf{x}_{n-1}} [\delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1})]$
 - $\psi(\mathbf{x}_n) = \underset{x_{n-1}}{\operatorname{argmax}} \left[\delta(\mathbf{x}_{n-1}) p(\mathbf{x}_n | \mathbf{x}_{n-1}) \right]$
- On termination:
 - $p(Z,X|\theta) = \max_{x_N} \delta(x_N)$
 - $\mathbf{x}_N^* = \underset{\mathbf{x}_N}{\operatorname{argmax}} \, \delta(\mathbf{x}_N)$
- Backtracking:
 - $\bullet \ \mathbf{x}_{n}^{\star} = \psi(\mathbf{x}_{n+1})$

3. Learning the Model Parameters

- Given an observation sequence z₁,z₂,z₃...
- Find optimal model parameters $\theta = \pi, A, \varphi$
- We need to maximize the likelihood $p(Z|\theta)$
- Can not be solved in closed form
- Iterative algorithm "Baum-Welch": a special case of the Expectation Maximization (EM) algorithm

3. Learning the Model Parameters

Idea: instead of maximizing

$$p(\mathbf{z}_1,\ldots,\mathbf{z}_N\mid\theta)=\sum_X p(\mathbf{z}_1,\ldots,\mathbf{z}_N,\mathbf{x}_1,\ldots,\mathbf{x}_N\mid\theta)$$

• we maximize the expected log likelihood:

$$\sum_{X} p(\mathbf{x}_1, \dots, \mathbf{x}_N \mid \mathbf{z}_1, \dots, \mathbf{z}_N, \theta) \log p(\mathbf{z}_1, \dots, \mathbf{z}_N, \mathbf{x}_1, \dots, \mathbf{x}_N \mid \theta)$$

- it can be shown that this is a lower bound of the actual log-likelihood $p(Z|\theta)$
- this is the general idea of the Expectation-Maximization (EM) algorithm

- E-Step (assuming we know π ,A, φ , i.e. θ ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n|Z)$

- E-Step (assuming we know π ,A, φ , i.e. θ ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | \mathbf{z}_1, ..., \mathbf{z}_N)$
- It follows that $\gamma(\mathbf{x}_n) = \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n) / p(Z)$

- E-Step (assuming we know π ,A, φ , i.e. θ ^{old})
- Define the posterior probability of being in state i at step k:
- Define $\gamma(\mathbf{x}_n) = p(\mathbf{x}_n | \mathbf{z}_1, ..., \mathbf{z}_n)$
- It follows that $\gamma(\mathbf{x}_n) = \alpha(\mathbf{x}_n) \beta(\mathbf{x}_n) / p(Z)$
- Define $\xi(\mathbf{x}_{n-1},\mathbf{x}_n) = p(\mathbf{x}_{n-1},\mathbf{x}_n|Z)$
- It follows that

$$\xi(\mathbf{x}_{n-1},\mathbf{x}_n) = \alpha(\mathbf{x}_{n-1})p(\mathbf{z}_n|\mathbf{x}_n)p(\mathbf{x}_n|\mathbf{x}_{n-1})\beta(\mathbf{x}_n) / p(\mathbf{z}_n|\mathbf{x}_n)$$

- Note: $\gamma(\mathbf{x}_n)$ is a vector of length K; each entry $\gamma_k(\mathbf{x}_n)$ represents the probability that the state at time n is equal to $k \in \{1, ..., K\}$
- Thus: The expected number of transitions from state k in the sequence X is

$$\sum_{i=1}^{N} \gamma_k(\mathbf{x}_i)$$

- Note: $\gamma(\mathbf{x}_n)$ is a vector of length K; each entry $\gamma_k(\mathbf{x}_n)$ represents the probability that the state at time n is equal to $k \in \{1, ..., K\}$
- Thus: The **expected** number of transitions from state k in the sequence X is $\sum_{i=1}^{N} \gamma_k(\mathbf{x}_i)$
- Similarly: The expected number of transitions from state j to state k in the sequence X is

$$\sum_{i=1}^{N-1} \xi_{j,k}(\mathbf{x}_i, \mathbf{x}_{i+1})$$

• With that we can compute new values for π ,A, φ :

$$\pi_k = \gamma_k(\mathbf{x}_1)$$

$$A_{j,k} = \frac{\sum_{i=1}^{N-1} \xi_{j,k}(\mathbf{x}_i, \mathbf{x}_{i+1})}{\sum_{i=1}^{N} \gamma_j(\mathbf{x}_i)} \qquad \varphi_{j,k} = \frac{\sum_{i=1}^{N} \gamma_j(\mathbf{x}_i) \delta_{k,\mathbf{x}_t}}{\sum_{i=1}^{N} \gamma_j(\mathbf{x}_i)}$$

here, we need forward and backward step!

 This is done until the likelihood does not increase anymore (convergence)

The Baum-Welsh Algorithm - Summary

- Start with an initial estimate of $\theta = (\pi, A, \varphi)$ e.g. uniformly and k-means for φ
- Compute messages (E-Step)
- Compute new $\theta = (\pi, A, \varphi)$ (M-step)
- Iterate E and M until convergence
- In each iteration one full application of the forward-backward algorithm is performed
- Result gives a local optimum
- For other local optima, the algorithm needs to be started again with new initialization

Summary

- HMMs are a way to model sequential data
- They assume discrete states
- Three possible operations can be performed with HMMs:
 - Data likelihood, given a model and an observation
 - Most likely state sequence, given a model and an observation
 - Optimal Model parameters, given an observation
- Appropriate scaling solves numerical problems
- HMMs are widely used, e.g. in speech recognition

