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Motivation

• Usually learning algorithms assume that some 
kind of feature function is given 

• Reasoning is then done on a feature vector of a 
given (finite) length 

• But: some objects are hard to represent with a 
fixed-size feature vector, e.g. text documents, 
molecular structures, evolutionary trees 

• Idea: use a way of measuring similarity without 
the need of features, e.g. the edit distance for 
strings 

• This we will call a kernel function
!2
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

if we write this in vector form, we get 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

if we write this in vector form, we get 

and the solution is 
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Dual Representation

Many problems can be expressed using a dual 
formulation, including linear regression. 

However, we can express this result in a different 
way using the matrix inversion lemma: 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

However, we can express this result in a different 
way using the matrix inversion lemma: 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

Plugging               into          gives:

!9

w = �T (��T + �IN )�1t
=: a

J(a) =
1

2
aT��T��Ta� aT��T t+ tT t+

�

2
aT��Ta

J(w)w = �Ta

“Dual Variables”

J(w) =
1

2
wT�T�w �w�T t+

1

2
tT t+

�

2
wTw

=: K

w = (�T�+ �IM )�1�T t



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This is called the dual formulation. 
Note:  
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This is called the dual formulation. 
The solution to the dual problem is: 
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Dual Representation

Many problems can be expressed using a dual 
formulation. Example (linear regression): 

This we can use to make predictions: 

(now x* is unknown and a is given from training)
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Dual Representation

where:  

Thus, f is expressed only in terms of dot products 
between different pairs of        , or in terms of the 
kernel function  
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Representation using the Kernel

Now we have to invert a matrix of size            , 
before it was             where            , but: 
By expressing everything with the kernel 
function, we can deal with very high-dimensional 
or even infinite-dimensional feature spaces! 
Idea: Don’t use features at all but simply define a 
similarity function expressed as the kernel!
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Constructing Kernels

The straightforward way to define a kernel function is to 
first find a basis (=feature) function        and to define: 

This means, k is an inner product in some space    , i.e: 
1.Symmetry: 
2.Linearity: 
3.Positive definite:                       , equal if  

Can we find conditions for k under which there is a 
(possibly infinite dimensional) basis function into    , 
where k is an inner product? 
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Constructing Kernels

Theorem (Mercer): If k is  

1.symmetric, i.e.                                 and 
2.positive definite, i.e.  
 
 
 
 
is positive definite, then there exists a mapping       
into a feature space     so that k can be expressed 
as an inner product in    . 
This means, we don’t need to find         explicitly! 

We can directly work with k 
!16
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Examples of Valid Kernels

• Polynomial Kernel: 

• Gaussian Kernel:  

• Kernel for sets: 

• Matern kernel:
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A Simple Example

Define a kernel function as 

This can be written as: 

It can be shown that this holds in general for  
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Visualization of the Example

Original decision 
boundary is an ellipse

Decision boundary 
becomes a hyperplane

!19
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Application Examples

Kernel Methods can be applied for many different 
problems, e.g.: 
• Density estimation (unsupervised learning) 
• Regression 
• Principal Component Analysis (PCA) 
• Classification 
Most important Kernel Methods are 
• Support Vector Machines 
• Gaussian Processes

!20
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Kernelization

• Many existing algorithms can be converted into 
kernel methods 

• This process is called “kernelization” 
Idea: 
• express similarities of data points in terms of an 

inner product (dot product) 
• replace all occurrences of that inner product by 

the kernel function 
This is called the kernel trick 

!21



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance

!22

kxi � xjk2 = xT
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Example: Nearest Neighbor

• The NN classifier selects the label of the nearest 
neighbor in Euclidean distance 

• We can now replace the dot products by a valid 
Mercer kernel and we obtain: 

• This is a kernelized nearest-neighbor classifier 
• We do not explicitly compute feature vectors!

!23

kxi � xjk2 = xT
i xi + xT

j xj � 2xT
i xj

d(xi,xj)
2 = k(xi,xi) + k(xj ,xj)� 2k(xi,xj)
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Back to Linear Regression (Rep.)

We had the primal and the dual formulation: 

with the dual solution: 

This we can use to make predictions: 

Note: This is (only) the most likely prediction! 
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Observations
•We have found a way to predict function values 

of y for new input points x* 
•As we used regularized regression, we can 

equivalently find the predictive distribution by 
marginalizing out the parameters w 

Questions: 
•Can we find a closed form for that distribution? 
•How can we model the uncertainty of our 

prediction? 
•Can we use that for classification?

!25
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Gaussian Marginals and Conditionals

First, we need some formulae: 
Assume we have two variables     and     that are 
jointly Gaussian distributed, i.e.  
with  

Then the cond. distribution 
where                                            
and  
The marginal is

!26
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Definition

Definition: A Gaussian process is a collection of 
random variables, any finite number of which have 
a joint Gaussian distribution. 

The number of random variables can be infinite! 
This means: a GP is a Gaussian distribution over 
functions! 
To specify a GP we need: 
mean function:   
covariance function: 

!27

m(x) = E[y(x)]

k(x1,x2) = E[y(x1)�m(x1)y(x2)�m(x2)]
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Example

•green line: sinusoidal data source 
•blue circles: data points with Gaussian noise 
•red line: mean function of the Gaussian 

process 

!28
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How Can We Handle Infinity?

Idea: split the (infinite) number of random 
variables into a finite and an infinite subset.  

From the marginalization property we get: 

This means we can use finite vectors.

!29
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The Covariance Function

The most used covariance function (kernel) is: 

It is known as “squared exponential”, “radial basis 
function” or “Gaussian kernel”. 
Other possibilities exist, e.g. the exponential 
kernel: 

This is used in the “Ornstein-Uhlenbeck” process.

!30

signal variance
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f exp(�
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Sampling from a GP

Just as we can sample from a Gaussian 
distribution, we can also generate samples from 
a GP. Every sample will then be a function! 
Process: 
1.Choose a number of input points 

2.Compute the covariance matrix K where 

3.Generate a random Gaussian vector from  

4.Plot the values                  versus

!31
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Sampling from a GP

Squared exponential kernel

!32

Exponential kernel
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Prediction with a Gaussian Process

Most often we are more interested in predicting 
new function values for given input data. 
We have:  

training data 
test input 

And we want test outputs 
The joint probability is 

and we need to compute                       .    

!33
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Prediction with a Gaussian Process

In the case of only one test point      we have 

Now we compute the conditional distribution 

where 

This defines the predictive distribution.
!34
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Example

Functions sampled from  
a Gaussian Process prior

!35
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Functions sampled from the 
predictive distribution

The predictive distribution is itself a Gaussian process. 
It represents the posterior after observing the data. 

The covariance is low in the vicinity of data points.
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Varying the Hyperparameters

•20 data samples 
•GP prediction with  

different kernel 
hyper parameters

!36
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Implementation

•Cholesky decomposition is numerically stable 
•Can be used to compute inverse efficiently

!37

Algorithm 1: GP regression

Data: training data (X,y), test data x⇤
Input: Hyper parameters �2

f , l, �
2
n

Kij  k(xi,xj)

L cholesky(K + �2
yI)

↵ LT \(L\y)
E[f⇤] kT

⇤ ↵
v L\k⇤
var[f⇤] k(x⇤,x⇤)� vTv
log p(y | X) � 1

2y
T↵�

P
i logLii � N

2 log(2⇡)

Precomputed 
during Training

Test Phase

n
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Estimating the Hyperparameters

To find optimal hyper parameters we need the 
marginal likelihood: 

This expression implicitly depends on the hyper 
parameters, but y and X are given from the 
training data. It can be computed in closed form, 
as all terms are Gaussians.  
We take the logarithm, compute the derivative 
and set it to 0. This is the training step.

!38

p(y | X) =

Z
p(y | f , X)p(f | X)df
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Estimating the Hyperparameters

The log marginal likelihood is 
not necessarily concave, i.e. it 
can have local maxima. 

The local maxima can 
correspond to sub-optimal 
solutions.

!39
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Gaussian Processes For Classification

In regression we have          , in binary 
classification we have   
To use a GP for classification, we can apply a 
sigmoid function to the posterior obtained from 
the GP and compute the class probability as: 

If the sigmoid function is symmetric: 
then we have                            . 
A typical type of sigmoid function is the logistic 
sigmoid: 

!41

y 2 R
y 2 {�1; 1}

p(y = +1 | x) = �(f(x))

�(�z) = 1� �(z)

p(y | x) = �(yf(x))

�(z) =
1

1 + exp(�z)
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Application of the Sigmoid Function

Function sampled from  
a Gaussian Process

!42

Sigmoid function applied to 
the GP function

Another symmetric sigmoid function is the 
cumulative Gaussian:

�(z) =

Z z

�1
N (x | 0, 1)dx
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Visualization of Sigmoid Functions

The cumulative Gaussian is slightly steeper than 
the logistic sigmoid

!43
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The Latent Variables

In regression, we directly estimated f as 
 
and values of f where observed in the training 
data. Now only labels +1 or -1 are observed and 

f  is treated as a set of latent variables. 

A major advantage of the Gaussian process 
classifier over other methods is that it 
marginalizes over all latent functions rather 
than maximizing some model parameters.

!44

f(x) ⇠ GP(m(x), k(x,x0))



PD Dr. Rudolph Triebel 
Computer Vision Group

Machine Learning for 
Computer Vision

Class Prediction with a GP

The aim is to compute the predictive distribution

!45

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

�(f⇤)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data:

!46

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

predictive distribution of the 
latent variable (from regression)
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Class Prediction with a GP

The aim is to compute the predictive distribution 

we marginalize over the latent variables from the 
training data: 

we need the posterior over the latent variables:

!47

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤

p(f⇤ | X,y,x⇤) =

Z
p(f⇤ | X,x⇤, f)p(f | X,y)df

p(f | X,y) =
p(y | f)p(f | X)

p(y | X)

likelihood 
(sigmoid)

prior

normalizer
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A Simple Example

•Red: Two-class training data 
•Green: mean function of 
•Light blue: sigmoid of the mean function 

!48

p(f | X,y)
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But There Is A Problem...

•The likelihood term is not a Gaussian! 
•This means, we can not compute the 

posterior in closed form. 
•There are several different solutions in the 

literature, e.g.: 
•Laplace approximation 
•Expectation Propagation 
•Variational methods

!49

p(f | X,y) =
p(y | f)p(f | X)

p(y | X)
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Laplace Approximation

where 
and  
To compute    an iterative approach using 
Newton’s method has to be used. 

The Hessian matrix A can be computed as 

where                                  is a diagonal matrix 
which depends on the sigmoid function.

!50

p(f | X,y) ⇡ q(f | X,y) = N (f | f̂ , A�1)

f̂ = argmax
f

p(f | X,y)

A = �rr log p(f | X,y)|f=f̂

second-order 
Taylor expansion

f̂

A = K�1 +W

W = �rr log p(y | f)
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Laplace Approximation

•Yellow: a non-Gaussian posterior 
•Red: a Gaussian approximation, the mean is 

the mode of the posterior, the variance is the 
negative second derivative at the mode
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V[f⇤ | X,y,x⇤] = k(x⇤,x⇤)� kT
⇤ (K +W�1)�1k⇤
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Applying this to Laplace

It remains to compute  

Depending on the kind of sigmoid function we 
• can compute this in closed form (cumulative 

Gaussian sigmoid) 

• have to use sampling methods or analytical 
approximations (logistic sigmoid)
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E[f⇤ | X,y,x⇤] = k(x⇤)
TK�1f̂

p(y⇤ = +1 | X,y,x⇤) =

Z
p(y⇤ | f⇤)p(f⇤ | X,y,x⇤)df⇤
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A Simple Example

•Two-class problem (training data in red and blue) 
•Green line: optimal decision boundary 
•Black line: GP classifier decision boundary 
•Right: posterior probability
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Summary 
• Kernel methods solve problems by implicitly mapping 

the data into a (high-dimensional) feature space 

• The feature function itself is not used, instead the 
algorithm is expressed in terms of the kernel 

• Gaussian Processes are Normal distributions over 
functions 

• To specify a GP we need a covariance function 
(kernel) and a mean function 

• More on Gaussian Processes: 
http://videolectures.net/epsrcws08_rasmussen_lgp/
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