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Motivation

How do we measure similarity?
What is a metric?
Why to learn a metric?
How to learn a metric?
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How do we measure similarity?
Most algorithms that intend to extract knowledge from data, have
to investigate relationships between objects.

This often reduces to computing distances between data points.

Thus, such an algorithm’s performance critically depends on its
notion of similarity between objects.
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What is a metric?
A metric or distance function is a function that defines a
distance between each pair of elements of a set.

Formally, it is a mapping D : X × X → R+ over a vector space X ,
where the following conditions are satisfied ∀xi , xj , xk ∈ X :

1. D(xi , xj) ≥ 0 Non-negativity
2. D(xi , xj) = D(xj , xi) Symmetry
3. D(xi , xj) ≤ D(xi , xk) +D(xk , xj) Triangle inequality
4. D(xi , xj) = 0 ⇔ xi = xj Identity of indiscernibles

If condition 4 is not met, we are referring to a pseudo-metric.
Usually we do not distinguish between metrics and pseudo-metrics.
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Why learn a metric?

“The greatest thing by far is to be a master of metaphor; it is the
one thing that cannot be learned from others; and it is also a sign
of genius, since a good metaphor implies an intuitive perception of

the similarity of the dissimilar.”

Aristotle
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Why learn a metric?

Sometimes, the problem implicitly defines a suitable similarity
measure, e.g. Hamming distance to compare binary vectors:
dH(“1001”, “1010”) = 2.
In many interesting problems however, a proper similarity
measure is not easy to define. It is preferable then to learn a
metric directly from data.

M.Sc. John Chiotellis: Metric Learning 7 / 46



Computer Vision Group

A family of metrics
A family of metrics over X is defined by computing Euclidean
distances after applying a linear transformation L such that
x → Lx . These metrics compute squared distances as

DL(xi , xj) = ||Lxi − Lxj ||22
Equation (8) defines a valid metric if L is full rank and a valid
pseudo-metric otherwise.

Intuitively, we want to
stretch the dimensions that contain more information and
contract the dimensions that explain less of the data.
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A family of metrics - An example
Consider two data points x1 = (1, 1) and x2 = (3, 2) that are known to be dissimilar.

The transformation L =

(
3 0
0 1

)
maps the points to x ′

1 = (3, 1) and x ′
2 = (9, 2) as it

weights distances along the first axis 3 times more than the second. The squared
distance of the points changed from (3 − 1)2 + (2 − 1)2 = 5 to (9 − 3)2 + (2 − 1)2 = 37.
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Another view: Mahalanobis metrics
Expanding the squared distances equation:

DL(xi , xj) = ||Lxi − Lxj ||22 = (xi − xj)
T LT L(xi − xj)

This allows us to express squared distances in terms of the square
matrix M = LT L which is guaranteed to be positive semidefinite.
In terms of M we denote squared distances as

DM(xi , xj) = (xi − xj)
T M(xi − xj)

We refer to pseudo-metrics of this form as Mahalanobis metrics.

It is easy to see that by setting M equal to the identity matrix, we
fall back to common squared Euclidean distances.
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To learn L or M
Thus, we have two options on what to learn, which gives rise to
two approaches in DML:

Learn a linear transformation L of the data
M = LT L is then uniquely defined
Optimization is unconstrained

Learn a Mahalanobis metric M
M defines L up to rotation (does not influence distances)
Constraint: M must be positive semidefinite
But has certain advantages

The dimensions of M are fixed a-priori (d × d)
Interpretation: Similar to inverse covariance matrix
Objectives are linear in M (gradient is independent of M)
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Principal Component Analysis [Pearson, 1901]
The main goal of PCA is to find the linear transformation L that
projects the data to a subspace that maximizes the variance.

The variance is expressed with the covariance matrix

C =
1

n

n∑
i=1

(xi − µ)(xi − µ)T

where µ = 1
n
∑n

i=1 xi is the sample mean.

It turns out that C = 1
nXXT (assuming zero-mean X ∈ Rd×n).

The covariance of the projected inputs is then

C′ =
1

n (LX)(LX)T =
1

nLXXT LT = LCLT
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Principal Component Analysis - Illustration
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In red: The first two eigenvectors of the covariance matrix, scaled
by the square roots of the two largest eigenvalues respectively.
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Principal Component Analysis (cont’d)
We can formulate PCA as an optimization problem:

max
L

Tr(LCLT ) subject to LLT = I

Closed-form solution: Rows of L are the eigenvectors of C.
Eigen-decomposing C is equivalent to computing the SVD of X.

Remarks around PCA
Is an unsupervised method (does not use data labels)
Is widely used for dimensionality reduction: L ∈ Rp×d , p < d
Can be used for:

De-noising : By removing the bottom eigenvectors
Speeding up search of nearest neighbors.
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Linear Discriminant Analysis [Fisher, 1936]
Unlike PCA, LDA is supervised: it uses labels of the inputs.
Goal: Find the L that maximizes the between-class variance
w.r.t. the within-class variance.

Assuming we have m classes, the covariance matrices are

Cb =
1

m

m∑
c=1

µcµ
T
c

Cw =
1

n

m∑
c=1

∑
i∈Ωc

(xi − µc)(xi − µc)
T ,

where Ωc is the set of indices of inputs that belong to class c,
µc is the sample mean of class c.
We assume that the data are globally centered.
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Linear Discriminant Analysis - Illustration
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Linear Discriminant Analysis (cont’d)
Corresponding optimization problem:

max
L

Tr( LCbLT

LCwLT ) subject to LLT = I

Closed form solution: Rows of L are the eigenvectors of C−1
w Cb .

Remarks around LDA
Is a supervised method (makes use of label information)
Is widely used as a preprocessing step for pattern classification
Works well when class distributions are Gaussians
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Neighborhood Component Analysis [Goldberger et al., 2004]
Idea: Learn a Mahalanobis metric explicitly to improve k-nn
classification.
Goal: Estimate the L that minimizes the expected LOO error.

Observations

LOO error is highly discontinuous w.r.t. the distance metric. /

In particular, an infinitesimal change in the metric can alter the
neighbour graph and thus change the validation performance.

We need a smoother (or at least continuous) function

Idea 2: Instead of picking a fixed number of k nearest neighbors, select a
single neighbor stochastically and count the expected votes.
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Neighborhood Component Analysis (cont’d)
The neighbors xj for each point xi are drawn from a softmax pdf:

pij =


exp(−||(Lxi−Lxj ||2))∑

k 6=i exp(−||(Lxi−Lxk ||2))
if i 6= j

0 if i = j

The fraction of the time that xi will be correctly labeled is:

pi =
∑
j∈Ci

pij where Ci = {j : yi = yj}

The expected error then is

εNCA = 1− 1

n
∑

ij
pijyij where yij =

{
1 if yi = yj

0 otherwise
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Neighborhood Component Analysis (cont’d)
Optimization

max
L

f (L) = max
L

∑
i pi (equivalent to `1 error minimization)

ϑε

ϑL = 2L
∑

i

pi
∑

k
pikxikxT

ik −
∑
j∈Ci

pijxijxT
ij


max

L
g(L) = max

L

∑
i log pi (KL divergence minimization)

ϑε

ϑL = 2L
∑

i

(∑
k

pikxikxT
ik −

∑
j∈Ci

pijxijxT
ij∑

j∈Ci
pij

)
Remarks around NCA

We don’t have to choose a parameter k ,
The stochastic nature makes εNCA differentiable w.r.t. L ,
But εNCA is not convex → no globally optimal L /
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Data Visualization - PCA vs LDA vs NCA

Dataset

concentric
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Large Margin Nearest Neighbor [Weinberger et al., 2005]

Idea: Enforce the maximum margin possible between
intra-class and inter-class samples (as in SVMs)
Considers triplets of points (x , x+, x−).

margin
local neighborhood

Euclidean Metric Mahalanobis Metric

~xi
~xi

~xj~xj

Goal: Find a metric to maximize k-nn accuracy
Advantage: Convex formulation w.r.t. M ,
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Large Margin Nearest Neighbor (cont’d)

Target neighbors of ~xi : samples desired to be closest to ~xi
Impostors: samples that violate the margin
Triplet Loss function

Pulling target neighbors together

εpull(L) =
∑
i,j i

||L(~xi − ~xj)||2

Pushing impostors away

εpush(L) =
∑
i,j i

∑
l
(1− yil)[1+ ||L(~xi −~xj)||2 − ||L(~xi −~xl)||2]+

Convex combination

ε(L) = (1− µ)εpull(L) + µεpush(L), µ ∈ [0, 1]
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Large Margin Nearest Neighbor - Optimization
Distances as traces

dM(xi , xj) = (xi − xj)
T M(xi − xj) = Tr(M(xi − xj)(xi − xj)

T ) = Tr(MCij)

Objective w.r.t. M

ε(M) = (1−µ)
∑
i,j i

Tr(MCij)+µ
∑

i,j i,l
(1−yil)[1+Tr(MCij)−Tr(MCil)]+

Active triplets at iteration t

Nt = {(i , j, l) : 1 + Tr(MtCij)− Tr(MtCil) > 0}

Gradient at iteration t and subsequent gradients

Gt = ∇Mε(Mt) = (1− µ)
∑
i,j i

Cij + µ
∑

(i,j,l)∈Nt

(Cij − Cil)

Gt+1 = Gt − µ
∑

(i,j,l)∈Nt−Nt+1

(Cij − Cil) + µ
∑

(i,j,l)∈Nt+1−Nt

(Cij − Cil)
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Information Theoretic Metric Learning [Davis et al., 2007]
Problem Formulation

min
M

Dld(M,M0) s.t.

dM(xi , xj) ≤ u if (i , j) ∈ S (similarity constraints)
dM(xi , xj) ≥ l if (i , j) ∈ D (dissimilarity constraints)

M � 0

Stein’s loss / log det divergence (convex in M ,)

Dld(M,M0) = Tr(MM−1
0 )− log det(MM−1

0 )− d

Equivalent to KL divergence between two multivariate
Gaussians with equal means and covariances M0,M.
KL(p(x |µ,M0)||p(x |µ,M)) = 1

2Dld(M,M0)
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Information Theoretic Metric Learning - Optimization
Bregman projections

Cycle through all constraints once.
At each iteration project the solution onto the current
constraint involving (xi , xj):
Mt+1 = Mt + βMt(xi − xj)(xi − xj)

T Mt

Remarks

Each constraint projection costs O(d2), therefore one cycle
through all constraints costs O(cd2).
No eigen-decomposition required ,

Automatic enforcement of positive semi-definiteness through
rank-one updates ,

Easy to incorporate a slack variable for each constraint ,
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Metric Learning and Kernel Methods
Kernel methods

Express similarity with the Gram matrix K which is n × n.
The feature space Φ is usually high-dimensional (theoretically can
be infinite-dimensional).
The training takes place in the kernel space. The algorithm no
longer sees the raw inputs X .
Algorithms scale as O(n2) or O(n3)

Metric Learning
Learns a transformation L, which is p × d or a Mahalanobis matrix
M which is d × d , like the covariance matrix C .
Usually p < d → learning also results in dimensionality reduction.
Algorithms scale as O(d2) or O(d3)

Metric learning can be combined with kernel methods for better results.
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Low-Rank Kernel learning [Kulis et al., 2006]
Problem Formulation

min
K

Dld(K,K0) s.t.

K(xi , xj) ≤ u if (i , j) ∈ S (similarity constraints)
K(xi , xj) ≥ l if (i , j) ∈ D (dissimilarity constraints)

K � 0

Bregman update

Kt+1 = Kt + βKt(ei − ej)(ei − ej)
T Kt

Theorem
Let K0 = XT M0X . If M∗ is the optimal Mahalanobis metric
learned by ITML and K∗ the optimal kernel matrix, then

K∗ = XT M∗X
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Metric Learning in kernel space
Problem Formulation

Assume input kernel function k(x , y) = φ(x)Tφ(y).
Want to learn metric
dM(x , y) = (φ(x)− φ(y))T M(φ(x)− φ(y)).
Equivalently: learn a new kernel function of the form
k̃(x , y) = φ(x)T Mφ(y).
Learned kernel k̃ can be shown to be of the form

k̃(x , y) = k(x , y) +
∑

i

∑
j

Mijk(x , xi)k(xj , y)

Can update parameters Mij while optimizing the kernel
formulation
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Metric Learning Variants
Most metric learning algorithms improve by looking at pairs,
triplets or even quadruplets of points.
Many noteworthy algorithms exist:

Relevant Component Analysis (RCA) [Shental et al., 2002]
Maximally Collapsing Metric Learning (MCML)
[Globerson and Roweis, 2005]
Information Theoretic Metric Learning (ITML)
[Davis et al., 2007]
LogDet Exact Gradient Online (LEGO) [Jain et al., 2009]
Siamese Network [Chopra et al., 2005]
Triplet Network [Hoffer and Ailon, 2015]
…

This is definitely not an exhaustive list.
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Dimensionality Reduction
Some fundamental DR methods are learning a metric that
optimizes an objective:

PCA (maximizes variance)
LDA (maximizes between / within scatter ratio)
NCA (maximizes knn accuracy)

But most DR methods do not explicitly learn a metric:
Multi-dimensional scaling (MDS) [Torgerson, 1952]
Locality-Sensitive Hashing (LSH) [Gionis et al., 1999]
Self-Organizing Maps (SOM) [Kohonen, 1998]
Auto-encoders [Rumelhart et al., 1985]
…
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Multidimensional Scaling [Torgerson, 1952]
Inverse Problem: Given a matrix of (dis-)similarities D ∈ RN×N ,
find a (low-dimensional) embedding of N points.
Goal of MDS is to find coordinates of the data points in some
subspace of Rn, such that the given proximities are preserved.

A famous problem in cartography:
Find a 2-dimensional map of the
earth, so that distances between
cities are distorted as little as
possible.
Notice that the original distances are
not Euclidean, but geodesic
(measured along the earth’s surface).
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Multi-dimensional Scaling (cont’d)
We are given an N × N matrix D of distances dij between all pairs
of points. Metric MDS minimizes the distortion of distances in
terms of a residual sum of squares, called the “stress”:

stress(x1, x2, . . . , xN) =

√∑
i,j(dij − ||xi − xj ||)2∑

i,j d2
ij

(1)

so
{x1, x2, . . . , xN}∗ = arg min

{xi}
stress(x1, x2, . . . , xN) (2)

No unique solution. For example, all rotations of a solution
would produce the same distances.

MDS is often used for data visualization.
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Manifold Learning
A standard approach to non-linear dimensionality reduction.
Main Idea: The data lie on a surface of dimension much lower
than the original inputs.

Famous methods

kernel-PCA [Schölkopf et al., 1997]
Isomap [Tenenbaum et al., 2000]
Locally-Linear Embedding (LLE)
[Roweis and Saul, 2000]
Laplacian Eigenmaps
[Belkin and Niyogi, 2001]

Fun Fact: All these methods can be cast as kernel-PCA.
State-of-the-art method for high-dimensional data visualization:
t-distributed Stochastic Neighbor Embedding (t-SNE)
[Maaten and Hinton, 2008]
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Non-rigid 3D Shape Retrieval via LMNN [Chiotellis et al., 2016]

Dataset: SHREC’14 [Pickup et al., 2014]
Synthetic dataset: 300 models
(15 persons × 20 poses)

Real dataset: 400 models
(40 persons × 10 poses)
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Non-rigid 3D Shape Retrieval via LMNN (cont’d)
Retrieval Example

Top left: A query model.
Top row: 5 best matches retrieved by the Supervised Dictionary Learning method
[Litman et al., 2014].
Bottom row: 5 best matches retrieved by the proposed method (CSD+LMNN).
Blue: Matches from query class. Red: Matches from other classes.
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Non-rigid 3D Shape Retrieval via LMNN (cont’d)
Embeddings Visualization

Dataset

SHREC’14
Real

SHREC’14
Synthetic

yf (S) before learning learned L · yf (S)
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