Multiple View Geometry: Exercise Sheet 7
Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2018/mvg2018

Exercise: June 13th, 2018

Part I: Theory

The following exercises should be solved at home. Writing down your answer will help you present and discuss the answer during the tutorial.

1. Coimages of Points and Lines

Suppose p_{1}, p_{2} are two points on the line L. Let x_{1}, x_{2} be the images of the points p_{1}, p_{2}, respectively, and let l be the coimage of the line L.
Furthermore suppose L_{1}, L_{2} are two lines intersecting in the point p. Let x be the image of the point p and let l_{1}, l_{2} be the coimages of the lines L_{1}, L_{2}, respectively.

Draw a picture and convince yourself of the following relationships:
(a) Show that

$$
l \sim \hat{x_{1}} x_{2}, \quad x \sim \hat{l_{1}} l_{2}
$$

(b) Show that for some $r, s, u, v \in \mathbb{R}^{3}$,

$$
l_{1} \sim \hat{x} u, \quad l_{2} \sim \hat{x} v, \quad x_{1} \sim \hat{l} r, \quad x_{2} \sim \hat{l} s
$$

where \sim means equivalence in the sense of homogeneous coordinates.

2. Rank Constraints

Let x_{1} and x_{2} be two image points with projection matrices Π_{1}, Π_{2}. Show that the rank constraint

$$
\operatorname{rank}\binom{\hat{x_{1}} \Pi_{1}}{\hat{x_{2}} \Pi_{2}} \leqq 3
$$

ensures that x_{1} and x_{2} are images (/ projections) of the same three-dimensional point X.

3. Projection and Essential Matrix

Suppose two projection matrices $\Pi=[R, T]$ and $\Pi^{\prime}=\left[R^{\prime}, T^{\prime}\right] \in \mathbb{R}^{3 \times 4}$ are related by a common transformation H of the form

$$
H=\left[\begin{array}{cc}
I & 0 \\
v^{\top} & v_{4}
\end{array}\right] \in \mathbb{R}^{4 \times 4} \quad \text { where } v=\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

That is, $[R, T] H \sim\left[R^{\prime}, T^{\prime}\right]$ are equal up to scale.
Show that Π and Π^{\prime} give the same essential matrices ($E=\hat{T} R$ and $E^{\prime}=\hat{T}^{\prime} R^{\prime}$) up to a scale factor.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

Epipolar lines

1. Download the package ex7.zip from the website. Extract the images batinria0.pgm and batinria1.pgm. Their corresponding camera calibration matrices can be found in the file calibration.txt.
2. Show the two images with matlab and select a point in the first image. You can use the command $[x, y]=g i n p u t(n)$ to retrieve the image coordinates of a mouse click.
3. Think about where the corresponding epipolar line l_{2} in the second image could be.
4. Now compute the epipolar line $l_{2}=F x_{1}$ in the second image corresponding to the point x_{1} in the first image. To this end you will need to compute the fundamental matrix F between the two images.
(Use the calibration data from the file calibration.txt.)
5. Test your program for different points x_{1}. What do you observe?
6. Bonus: Determine the best matching point on the epipolar line via normalized cross correlation.
