Multiple View Geometry: Exercise Sheet 8
Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2018/mvg2018

Exercise: June 20th, 2018

Part I: Theory

The following exercises should be solved at home. Writing down your answer will help you present and discuss the answer during the tutorial.

Download the ICRA 2013 paper Robust Odometry Estimation for RGB-D Cameras by Kerl, Sturm and Cremers from the Publications sections on our webpage. ${ }^{1}$ Read the paper and focus in particular on III. Direct Motion Estimation.

1. Image Warping

(a) Look at the warping function $\tau(\xi, \mathbf{x})$ in Eq. (9). What do $\tau(\xi, \mathbf{x})$ and $r_{i}(\xi)$ look like at $\xi=0$?
(b) Prove that the derivative of $r_{i}(\xi)$ w.r.t. ξ at $\xi=\mathbf{0}$ is

$$
\left.\frac{\partial r_{i}(\xi)}{\partial \xi}\right|_{\xi=\mathbf{0}}=\left.\frac{1}{z}\left(\begin{array}{ll}
I_{x} f_{x} & I_{y} f_{y}
\end{array}\right)\left(\begin{array}{cccccc}
1 & 0 & -\frac{x}{z} & -\frac{x y}{z} & z+\frac{x^{2}}{z} & -y \\
0 & 1 & -\frac{y}{z} & -z-\frac{y^{2}}{z} & \frac{x y}{z} & x
\end{array}\right)\right|_{(x, y, z)^{\top}=\pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)}
$$

To this end, apply the chain rule multiple times and use the following identity:

$$
\left.\frac{\partial T(g(\xi), \mathbf{p})}{\partial \xi}\right|_{\xi=\mathbf{0}}=\left(\operatorname{Id}_{3} \quad-\hat{\mathbf{p}}\right) \in \mathbb{R}^{3 \times 6}
$$

2. Image Pyramids

In order to handle large translational and rotational motions, a coarse-to-fine scheme is applied in the paper. To go from one level l to $l+1$, the images $I^{(l)}$ (intensity) and $D^{(l)}$ (depth) are downscaled by averaging over intensities or valid depth values, respectively:

$$
\begin{aligned}
I^{(l+1)}(n, m) & :=\frac{1}{4} \cdot \sum_{n^{\prime}, m^{\prime} \in O(n, m)} I^{(l)}\left(n^{\prime}, m^{\prime}\right) \\
O(n, m) & =\{(2 n, 2 m),(2 n+1,2 m),(2 n, 2 m+1),(2 n+1,2 m+1)\} \\
D^{(l+1)}(n, m) & :=\frac{1}{\left|O_{d}(n, m)\right|} \cdot \sum_{n^{\prime}, m^{\prime} \in O_{d}(n, m)} D^{(l)}\left(n^{\prime}, m^{\prime}\right) \\
O_{d}(n, m) & =\left\{\left(n^{\prime}, m^{\prime}\right) \in O(n, m): D\left(n^{\prime}, m^{\prime}\right) \neq 0\right\}
\end{aligned}
$$

How does the camera matrix K change from level l to $l+1$? Write down $f_{x}^{(l+1)}, f_{y}^{(l+1)}, c_{x}^{(l+1)}$ and $c_{y}^{(l+1)}$ in terms of $f_{x}^{(l)}, f_{y}^{(l)}, c_{x}^{(l)}$ and $c_{y}^{(l)}$.

[^0]
3. Optimization for Normally Distributed $p\left(r_{i}\right)$

(a) Confirm that a normally distributed $p\left(r_{i}\right)$ with a uniform prior on the camera motion leads to normal least squares minimization. To this end, insert

$$
p\left(r_{i} \mid \xi\right)=p\left(r_{i}\right)=A \exp \left(-\frac{r_{i}^{2}}{\sigma^{2}}\right)
$$

into Eq. (15) (use $p(\xi)=$ const there) and show that

$$
\xi_{\mathrm{MAP}}=\arg \min _{\xi} \sum_{i} r_{i}(\xi)^{2}
$$

(b) Explicitly show that the weights

$$
w\left(r_{i}\right)=\frac{1}{r_{i}} \frac{\partial \log p\left(r_{i}\right)}{\partial r_{i}}
$$

are constant for normally distributed $p\left(r_{i}\right)$.
(c) Show that in the case of normally distributed $p\left(r_{i}\right)$ the update step $\Delta \xi$ can be computed as

$$
\Delta \xi=-\left(J^{\top} J\right)^{-1} J^{\top} \mathbf{r}(\mathbf{0})
$$

Part II: Practical Exercises

This exercise is to be solved during the tutorial.
In this exercise you will implement direct image alignment as Gauss-Newton minimization on $S E(3)$. Download the package ex8.zip provided on the website. It contains a code framework, test images and the corresponding camera calibration.

1. Implement the function [Id, Dd, Kd] = downscale (I, D, K, level) which (recursively) halves the image resolution of the image I, the depth map D and adjusts the corresponding camera matrix K per pyramid level l. For an input frame of dimensions $640 \times 480(l=1)$, level 2 corresponds to 320×240 pixels, level 3 corresponds to 160×120 pixels and so on. Use the equations and results obtained in the theory part.
2. Complete the function $r=\operatorname{calcErr}(I 1, \mathrm{D} 1, \mathrm{I} 2, \mathrm{xi}, \mathrm{K})$ that takes the images and their (assumed) relative pose, and calculates the per-pixel residual $\mathbf{r}(\xi)$ as defined in the slides. r should be a $n \times 1$ vector, with $n=w \times h$, the number of pixels. Visualize the residual as image for $\xi=\mathbf{0}$.
Hint: perform tests on a coarse version of the image (e.g. 160×120) to make it run faster.
3. Implement the function $[J, r]=$ deriveNumeric (I1, D1, I2, $x i, K)$ that differentiates $\mathbf{r}(\xi)$ numerically w.r.t. ξ : for each pixel \mathbf{x}_{i} compute

$$
\frac{\partial r_{i}(\xi)}{\partial \xi}=\left(\frac{r_{i}\left(\left(\epsilon \mathbf{e}_{1}\right) \circ \xi\right)-r_{i}(\xi)}{\epsilon}, \ldots, \frac{r_{i}\left(\left(\epsilon \mathbf{e}_{6}\right) \circ \xi\right)-r_{i}(\xi)}{\epsilon}\right)
$$

where ϵ is a small value (for Matlab $\epsilon=10^{-6}$), \mathbf{e}_{j} is the j^{\prime} 'th unit vector and the operator \circ is defined by

$$
\xi_{1} \circ \xi_{2}:=\log \left(\exp \left(\xi_{1}\right) \cdot \exp \left(\xi_{2}\right)\right) .
$$

J should be a $n \times 6$ matrix. The per-pixel residuals $\mathbf{r}(\xi)$ are returned as r.
4. Implement Gauss-Newton minimization for the photometric error

$$
E(\xi)=\sum_{i} r_{i}(\xi)^{2}=\|\mathbf{r}(\xi)\|_{2}^{2}
$$

according to the theory part. To this end, complete the script Ex8_Script in 11. 70 and 11. 75. For an update $\Delta \xi$, compute the updated motion as $\xi_{\text {new }}=\Delta \xi \circ \xi_{\text {old }}$. Use only one pyramid level $l=3(160 \times 120)$ in the beginning, and then add the others.
5. Implement a function $J=$ deriveAnalytic (I1, D1, I2, xi, K) that differentiates $\mathbf{r}(\xi)$ analytically w.r.t. ξ. Use the result of the theory part, Exercise 1 (b). The use of this analytical gradient instead of the numeric derivatives in the minimization should result in a significant speed-up.
6. Run your implementation on the provided images using the script Ex8_Script.

[^0]: ${ }^{1}$ http://vision.in.tum.de/publications

