

Multiple View Geometry: Exercise Sheet 8

Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger Computer Vision Group, TU Munich

http://vision.in.tum.de/teaching/ss2018/mvg2018

Exercise: June 20th, 2018

Part I: Theory

The following exercises should be **solved at home**. Writing down your answer will help you present and discuss the answer during the tutorial.

Download the ICRA 2013 paper *Robust Odometry Estimation for RGB-D Cameras* by Kerl, Sturm and Cremers from the *Publications* sections on our webpage.¹ Read the paper and focus in particular on *III. Direct Motion Estimation*.

1. Image Warping

- (a) Look at the warping function $\tau(\xi, \mathbf{x})$ in Eq. (9). What do $\tau(\xi, \mathbf{x})$ and $r_i(\xi)$ look like at $\xi = \mathbf{0}$?
- (b) Prove that the derivative of $r_i(\xi)$ w.r.t. ξ at $\xi = \mathbf{0}$ is

$$\left. \frac{\partial r_i(\xi)}{\partial \xi} \right|_{\xi=\mathbf{0}} = \left. \frac{1}{z} \begin{pmatrix} I_x f_x & I_y f_y \end{pmatrix} \begin{pmatrix} 1 & 0 & -\frac{x}{z} & -\frac{xy}{z} & z + \frac{x^2}{z} & -y \\ 0 & 1 & -\frac{y}{z} & -z - \frac{y^2}{z} & \frac{xy}{z} & x \end{pmatrix} \right|_{(x,y,z)^\top = \pi^{-1}(\mathbf{x}_i, Z_1(\mathbf{x}_i))}$$

To this end, apply the chain rule multiple times and use the following identity:

$$\left. \frac{\partial T\left(g(\xi),\mathbf{p}\right)}{\partial \xi} \right|_{\xi=\mathbf{0}} = \begin{pmatrix} \mathrm{Id}_3 & -\hat{\mathbf{p}} \end{pmatrix} \in \mathbb{R}^{3\times 6} \; .$$

2. Image Pyramids

In order to handle large translational and rotational motions, a coarse-to-fine scheme is applied in the paper. To go from one level l to l+1, the images $I^{(l)}$ (intensity) and $D^{(l)}$ (depth) are downscaled by averaging over intensities or valid depth values, respectively:

$$I^{(l+1)}(n,m) := \frac{1}{4} \cdot \sum_{n',m' \in O(n,m)} I^{(l)}(n',m')$$

$$O(n,m) = \{(2n,2m), (2n+1,2m), (2n,2m+1), (2n+1,2m+1)\}$$

$$D^{(l+1)}(n,m) := \frac{1}{|O_d(n,m)|} \cdot \sum_{n',m' \in O_d(n,m)} D^{(l)}(n',m')$$

$$O_d(n,m) = \{(n',m') \in O(n,m) : D(n',m') \neq 0\}$$

How does the camera matrix K change from level l to l+1? Write down $f_x^{(l+1)}$, $f_y^{(l+1)}$, $c_x^{(l+1)}$ and $c_y^{(l+1)}$ in terms of $f_x^{(l)}$, $f_y^{(l)}$, $c_x^{(l)}$ and $c_y^{(l)}$.

http://vision.in.tum.de/publications

3. Optimization for Normally Distributed $p(r_i)$

(a) Confirm that a normally distributed $p(r_i)$ with a uniform prior on the camera motion leads to normal least squares minimization. To this end, insert

$$p(r_i|\xi) = p(r_i) = A \exp\left(-\frac{r_i^2}{\sigma^2}\right)$$

into Eq. (15) (use $p(\xi) = \text{const there}$) and show that

$$\xi_{\mathrm{MAP}} = \arg\min_{\xi} \sum_{i} r_{i}(\xi)^{2}$$
 .

(b) Explicitly show that the weights

$$w(r_i) = \frac{1}{r_i} \frac{\partial \log p(r_i)}{\partial r_i}$$

are constant for normally distributed $p(r_i)$.

(c) Show that in the case of normally distributed $p(r_i)$ the update step $\Delta \xi$ can be computed as

$$\Delta \xi = -\left(J^{\top}J\right)^{-1}J^{\top}\mathbf{r}(\mathbf{0})$$
.

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

In this exercise you will implement direct image alignment as Gauss-Newton minimization on SE(3). Download the package ex8.zip provided on the website. It contains a code framework, test images and the corresponding camera calibration.

- 1. Implement the function <code>[Id,Dd,Kd] = downscale(I,D,K,level)</code> which (recursively) halves the image resolution of the image I, the depth map D and adjusts the corresponding camera matrix K per pyramid level l. For an input frame of dimensions 640×480 (l=1), level 2 corresponds to 320×240 pixels, level 3 corresponds to 160×120 pixels and so on. Use the equations and results obtained in the theory part.
- 2. Complete the function $\mathbf{r} = \mathtt{calcErr}(\mathtt{II}, \mathtt{DI}, \mathtt{IZ}, \mathtt{xi}, \mathtt{K})$ that takes the images and their (assumed) relative pose, and calculates the per-pixel residual $\mathbf{r}(\xi)$ as defined in the slides. \mathbf{r} should be a $n \times 1$ vector, with $n = w \times h$, the number of pixels. Visualize the residual as image for $\xi = \mathbf{0}$.

Hint: perform tests on a coarse version of the image (e.g. 160×120) to make it run faster.

3. Implement the function [J, r] = deriveNumeric(I1, D1, I2, xi, K) that differentiates $\mathbf{r}(\xi)$ numerically w.r.t. ξ : for each pixel \mathbf{x}_i compute

$$\frac{\partial r_i(\xi)}{\partial \xi} = \left(\frac{r_i((\epsilon \mathbf{e}_1) \circ \xi) - r_i(\xi)}{\epsilon}, ..., \frac{r_i((\epsilon \mathbf{e}_6) \circ \xi) - r_i(\xi)}{\epsilon}\right)$$

where ϵ is a small value (for Matlab $\epsilon = 10^{-6}$), \mathbf{e}_j is the j'th unit vector and the operator \circ is defined by

$$\xi_1 \circ \xi_2 := \log \left(\exp(\xi_1) \cdot \exp(\xi_2) \right)$$
.

J should be a $n \times 6$ matrix. The per-pixel residuals $\mathbf{r}(\xi)$ are returned as r.

4. Implement Gauss-Newton minimization for the photometric error

$$E(\xi) = \sum_{i} r_i(\xi)^2 = ||\mathbf{r}(\xi)||_2^2$$

according to the theory part. To this end, complete the script Ex8_Script in Il. 70 and Il. 75. For an update $\Delta \xi$, compute the updated motion as $\xi_{\rm new} = \Delta \xi \circ \xi_{\rm old}$. Use only one pyramid level l=3 (160×120) in the beginning, and then add the others.

- 5. Implement a function J = deriveAnalytic(II, DI, I2, xi, K) that differentiates $\mathbf{r}(\xi)$ analytically w.r.t. ξ . Use the result of the theory part, Exercise 1 (b). The use of this analytical gradient instead of the numeric derivatives in the minimization should result in a significant speed-up.
- 6. Run your implementation on the provided images using the script Ex8_Script.