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Direct Image Alignment

• = “Direct Tracking” / “Dense Tracking” / “Dense Visual Odometry”
• = “Lucas-Kanade Tracking on SE(3)”

reference image

reference depth

new image

+ → Camera
pose
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Keypoints, Direct, Sparse, Dense

• Sparse: use a small set of selected pixels (keypoints)

• Dense: use all (valid) pixels
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Extract and match
keypoints

Determine relative 
camera pose (", $)
from keypoint matches

" , $ ?

Sparse Keypoint-based Visual Odometry
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Dense Direct Image Alignment

• Known pixel depth → "simulate" RGB-D image from 
different view point

• Ideally: warped image = image taken from that pose:
"# $ %, '( = "* '(
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• RGB-D: depth available →
find camera motion!

• Motion representation using 
the SE(3) Lie algebra

• Non-linear least squares 
optimization



Minimization of photometric error:
Normally distributed residuals

!(#, %&) warps a pixel from
reference image to new image
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Gauss-Newton optimization

• Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):
"- ∘ "' ≔ log exp 6"- ⋅ exp 6"' ∨ ≠ "' ∘ "- ≠ "- + "'

• Intuition: iteratively solve for ∇! " = 0 by 
approximating =!(") linearly (i.e. by approximating 
!(") quadratically)

• Using coarse-to-fine pyramid approach
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Gauss-Newton optimization

1. In every iteration k + 1 linearize 1 on manifold around current pose "(3):

1 " ≈ 1 " 3
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2. Solve for ∇! " = 0

! " = 1@ + J1 D KL '
'
= 1@

M1@ + 2KL
MJ1M1@ + KL

MJ1MJ1KL
∇! " = 2J1M1@ + 2J1MJ1KL = 0 ⇒ KL = − J1MJ1 E-J1M1@

3. Apply "(3P-) = KL ∘ " 3

4. Iterate (until convergence)
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Gauss-Newton optimization

Jacobian ./ : partial derivatives
Gradient of residual (1x6 row of ./ ):
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• transformed 3d point 
@:

A:

9:
≔ D E " 3 , FG- +%, H% +%

• the image gradient ∇(< ∇(> I of (' evaluated at warped point +%: ≔ ) " 3 , +%
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Coarse-to-Fine

• Adapt size of the neighborhood from coarse to fine

Coarse motion

Fine motion
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Coarse-to-Fine

• Minimize for down-scaled image (e.g. factor 8, 4, 2, 1) and use result as 
initialization for next finer level

• Elegant formulation: Downscale image and adjust ! accordingly
- Downscale by factor of 2 (e.g. 640x480 -> 320x240)
- Adjust camera matrix elements "#, "$, %# and %$:

!('()) =

1
2 "#

(') 0 1
2 %#

(') − 1
4

0 1
2 "$

(') 1
2 %$

(') − 1
4

0 0 1

- Assumes continuous coordinate of a discrete pixel is at its center, i.e. the 
top-left pixel-center has continuous coordinates (0,0)
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Final Algorithm
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