
Computer Vision II:
Multiple View Geometry
Exercise 8: Direct Image Alignment

Nikolaus Demmel, Marvin Eisenberger

June 20, 2018

Direct Image Alignment

• = “Direct Tracking” / “Dense Tracking” / “Dense Visual Odometry”
• = “Lucas-Kanade Tracking on SE(3)”

reference image

reference depth

new image

+ → Camera
pose

Slides based on slides by R. Maier 2016

Keypoints, Direct, Sparse, Dense

• Sparse: use a small set of selected pixels (keypoints)

• Dense: use all (valid) pixels
Slides based on slides by R. Maier 2016

Extract and match
keypoints

Determine relative
camera pose (", $)
from keypoint matches

" , $?

Sparse Keypoint-based Visual Odometry

Slides based on slides by R. Maier 2016

Dense Direct Image Alignment

• Known pixel depth → "simulate" RGB-D image from
different view point

• Ideally: warped image = image taken from that pose:
"# $ %, '(= "* '(

Slides based on slides by R. Maier 2016

• RGB-D: depth available →
find camera motion!

• Motion representation using
the SE(3) Lie algebra

• Non-linear least squares
optimization

Minimization of photometric error:
Normally distributed residuals

!(#, %&) warps a pixel from
reference image to new image

Slides based on slides by R. Maier 2016

(# =*
&
+& # , =*

&
-, ! #, %& − -/ %&

,

reference imagenew image
sum over

valid pixels

camera
pose

reference depth 0/
! #, %& = 1 2 3 # , 14/ %& , 0/ %&

1
5
6
7

= 89 5
7 + ;9

8< 6
7 + ;<

=

14/ 5
6 , 7 = 7 5 − ;9

89
7 6 − ;<

8<
7

=

! " =$
%
&% " ' =$

%
(') ", +% − (- +%

'

Gauss-Newton optimization

• Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):
"- ∘ "' ≔ log exp 6"- ⋅ exp 6"' ∨ ≠ "' ∘ "- ≠ "- + "'

• Intuition: iteratively solve for ∇! " = 0 by
approximating =!(") linearly (i.e. by approximating
!(") quadratically)

• Using coarse-to-fine pyramid approach

Slides based on slides by R. Maier 2016

! " = $
%

&% "
' = $

%

(') ", +% − (- +%
'

Gauss-Newton optimization

1. In every iteration k + 1 linearize 1 on manifold around current pose "(3):

1 " ≈ 1 " 3

16∈ℝ9

+
:1 ; ∘ " 3

:;
=
>?@

A1∈ℝ9×C

D " ∘ (" 3)E-

FG

2. Solve for ∇! " = 0

! " = 1@ + J1 D KL '
'
= 1@

M1@ + 2KL
MJ1M1@ + KL

MJ1MJ1KL
∇! " = 2J1M1@ + 2J1MJ1KL = 0 ⇒ KL = − J1MJ1 E-J1M1@

3. Apply "(3P-) = KL ∘ " 3

4. Iterate (until convergence)
Slides based on slides by R. Maier 2016

! " = $
%

&% " ' = $
%

(') ", +% − (- +%
'

Gauss-Newton optimization

Jacobian ./ : partial derivatives
Gradient of residual (1x6 row of ./):

0&% 1 ∘ " 3

01
4
567

=
1
9:

∇(<=< ∇(>=>
1 0 −

@:

9:
−
@:A:

9:
9: +

@:'

9:
−A:

0 1 −
A:

9:
−9: −

A:'

9:
@:A:

9:
@:

with

• transformed 3d point
@:

A:

9:
≔ D E " 3 , FG- +%, H% +%

• the image gradient ∇(< ∇(> I of (' evaluated at warped point +%: ≔) " 3 , +%

Slides based on slides by R. Maier 2016

Coarse-to-Fine

• Adapt size of the neighborhood from coarse to fine

Coarse motion

Fine motion

Slides based on slides by R. Maier 2016

Coarse-to-Fine

• Minimize for down-scaled image (e.g. factor 8, 4, 2, 1) and use result as
initialization for next finer level

• Elegant formulation: Downscale image and adjust ! accordingly
- Downscale by factor of 2 (e.g. 640x480 -> 320x240)
- Adjust camera matrix elements "#, "$, %# and %$:

!('()) =

1
2 "#

(') 0 1
2 %#

(') − 1
4

0 1
2 "$

(') 1
2 %$

(') − 1
4

0 0 1

- Assumes continuous coordinate of a discrete pixel is at its center, i.e. the
top-left pixel-center has continuous coordinates (0,0)

Slides based on slides by R. Maier 2016

Final Algorithm

Slides based on slides by R. Maier 2016

