Computer Vision II: Multiple View Geometry

Exercise 8: Direct Image Alignment

Nikolaus Demmel, Marvin Eisenberger
June 20, 2018

Direct Image Alignment

- = "Direct Tracking" / "Dense Tracking" / "Dense Visual Odometry"
- = "Lucas-Kanade Tracking on SE(3)"
reference image

reference depth

Slides based on slides by R. Maier 2016

Keypoints, Direct, Sparse, Dense

- Sparse: use a small set of selected pixels (keypoints)
- Dense: use all (valid) pixels Slides based on slides by R. Maier 2016

Sparse Keypoint-based Visual Odometry

Extract and match keypoints

Determine relative camera pose (R, \mathbf{t}) from keypoint matches

Dense Direct Image Alignment

- Known pixel depth \rightarrow "simulate" RGB-D image from different view point
- Ideally: warped image $=$ image taken from that pose:

$$
I_{2}\left(\tau\left(\xi, \mathbf{x}_{i}\right)\right)=I_{1}\left(\mathbf{x}_{i}\right)
$$

- RGB-D: depth available \rightarrow find camera motion!
- Motion representation using the $\operatorname{SE}(3)$ Lie algebra
- Non-linear least squares optimization

Minimization of photometric error: Normally distributed residuals

$$
\begin{aligned}
& \tau\left(\xi, \mathbf{x}_{i}\right)=\pi\left(T\left(g(\xi), \pi^{-1}\left(\mathbf{x}_{i}, Z_{1}\left(\mathbf{x}_{i}\right)\right)\right)\right) \\
& \pi\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
f_{x} x \\
z
\end{array}+c_{x} \frac{f_{y} y}{z}+c_{y}\right)^{\top} \\
& \pi^{-1}\left(\binom{x}{y}, z\right)=\left(\frac{z\left(x-c_{x}\right)}{f_{x}} \frac{z\left(y-c_{y}\right)}{f_{y}} z\right)^{\top}
\end{aligned}
$$

Gauss-Newton optimization

$$
E(\xi)=\sum_{i} r_{i}(\xi)^{2}=\sum_{i}\left(I_{2}\left(\tau\left(\xi, \mathbf{x}_{i}\right)\right)-I_{1}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Solved with Gauss-Newton algorithm using leftmultiplicative increments on $\operatorname{SE}(3)$:

$$
\xi_{1} \circ \xi_{2}:=\log \left(\exp \left(\widehat{\xi_{1}}\right) \cdot \exp \left(\widehat{\xi}_{2}\right)\right)^{\vee} \neq \xi_{2} \circ \xi_{1} \neq \xi_{1}+\xi_{2}
$$

- Intuition: iteratively solve for $\nabla E(\xi)=0$ by approximating $\nabla E(\xi)$ linearly (i.e. by approximating $E(\xi)$ quadratically)
- Using coarse-to-fine pyramid approach

Gauss-Newton optimization

$$
E(\xi)=\sum_{i} r_{i}(\xi)^{2}=\sum_{i}\left(I_{2}\left(\tau\left(\xi, \mathbf{x}_{i}\right)\right)-I_{1}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

1. In every iteration $\mathrm{k}+1$ linearize \mathbf{r} on manifold around current pose $\xi^{(k)}$:

$$
\mathbf{r}(\xi) \approx \underbrace{\mathbf{r}\left(\xi^{(k)}\right)}_{\mathbf{r}_{0} \in \mathbb{R}^{n}}+\underbrace{\left.\frac{\partial \mathbf{r}\left(\epsilon \circ \xi^{(k)}\right)}{\partial \epsilon}\right|_{\epsilon=0}}_{J \mathbf{r} \in \mathbb{R}^{n \times 6}} \cdot \underbrace{\left(\xi \circ\left(\xi^{(k)}\right)^{-1}\right)}_{\delta_{\xi}}
$$

2. Solve for $\nabla E(\xi)=0$

$$
\begin{aligned}
& E(\xi)=\left\|\mathbf{r}_{0}+J_{\mathbf{r}} \cdot \delta_{\xi}\right\|_{2}^{2}=\mathbf{r}_{0}^{\top} \mathbf{r}_{0}+2 \delta_{\xi}^{\top} J_{\mathbf{r}}^{\top} \mathbf{r}_{0}+\delta_{\xi}^{\top} J_{\mathbf{r}}^{\top} J_{\mathbf{r}} \delta_{\xi} \\
& \nabla E(\xi)=2 J_{\mathbf{r}}^{\top} \mathbf{r}_{0}+2 J_{\mathbf{r}}^{\top} J_{\mathbf{r}} \delta_{\xi}=0 \quad \Rightarrow \quad \delta_{\xi}=-\left(J_{\mathbf{r}}^{\top} J_{\mathbf{r}}\right)^{-1} J_{\mathbf{r}}^{\top} \mathbf{r}_{0}
\end{aligned}
$$

3. Apply $\xi^{(k+1)}=\delta \xi^{\circ} \xi^{(k)}$
4. Iterate (until convergence)

Slides based on slides by R. Maier 2016

Gauss-Newton optimization

$$
E(\xi)=\sum_{i} r_{i}(\xi)^{2}=\sum_{i}\left(I_{2}\left(\tau\left(\xi, \mathbf{x}_{i}\right)\right)-I_{1}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

Jacobian J_{r} : partial derivatives
Gradient of residual (1×6 row of J_{r}):
$\left.\frac{\partial r_{i}\left(\epsilon \circ \xi^{(k)}\right)}{\partial \epsilon}\right|_{\epsilon=0}=\frac{1}{z^{\prime}}\left(\nabla I_{x} f_{x} \quad \nabla I_{y} f_{y}\right)\left(\begin{array}{cccccc}1 & 0 & \frac{x^{\prime}}{z^{\prime}} & \frac{x^{\prime} y^{\prime}}{z^{\prime}} & z^{\prime}+\frac{x^{\prime 2}}{z^{\prime}} & -y^{\prime} \\ 0 & 1 & \frac{y^{\prime}}{z^{\prime}} & -z^{\prime} \frac{y^{\prime 2}}{z^{\prime}} & \frac{x^{\prime} y^{\prime}}{z^{\prime}} & x^{\prime}\end{array}\right)$
with

- transformed 3d point $\left(\begin{array}{l}x^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right):=T\left(g\left(\xi^{(k)}\right), \pi^{-1}\left(\mathbf{x}_{i}, Z_{i}\left(\mathbf{x}_{i}\right)\right)\right)$
- the image gradient $\left(\begin{array}{ll}\nabla I_{x} & \nabla I_{y}\end{array}\right)^{\top}$ of I_{2} evaluated at warped point $\mathbf{x}_{i}^{\prime}:=\tau\left(\xi^{(k)}, \mathbf{x}_{i}\right)$

Coarse-to-Fine

- Adapt size of the neighborhood from coarse to fine

Coarse-to-Fine

- Minimize for down-scaled image (e.g. factor $8,4,2,1$) and use result as initialization for next finer level
- Elegant formulation: Downscale image and adjust K accordingly
- Downscale by factor of 2 (e.g. $640 \times 480->320 \times 240$)
- Adjust camera matrix elements f_{x}, f_{y}, c_{x} and c_{y} :
- Assumes continuous coordinate of a discrete pixel is at its center, i.e. the top-left pixel-center has continuous coordinates $(0,0)$

Final Algorithm

$\xi^{(0)}=\mathbf{0}$
$\mathrm{k}=0$
for level = 3 ... 1
compute down-scaled images \& depthmaps (factor $=2^{\text {level }}$)
compute down-scaled K (factor $=2^{\text {level }}$)
for $i=1$.. 20
compute Jacobian $J_{\mathbf{r}} \in R^{n \times 6}$
compute update δ_{ξ}
apply update $\xi^{(k+1)}=\delta_{\xi} \circ \xi^{(k)}$
k++; maybe break early if δ_{ξ} too small or if residual increased done
done

+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm
Slides based on slides by R. Maier 2016

