Multiple View Geometry: Exercise Sheet 10
Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2018/mvg2018

Exercise: July 4th, 2018

Part I: Theory

The following exercises should be solved at home. Writing down your answer will help you present and discuss the answer during the tutorial.

1. Variational Calculus and Euler-Lagrange

Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a smooth scalar function and $E(u)$ an energy functional given by

$$
E(u)=\int_{\Omega} \mathcal{L}(u(x), \nabla u(x)) \mathrm{d} x .
$$

The Gâteaux derivative of E in h is given by

$$
\left.\frac{\delta E(u)}{\delta u}\right|_{h}:=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}[E(u+\epsilon h)-E(u)]=\int_{\Omega} \frac{\mathrm{d} E(u)}{\mathrm{d} u} \cdot h(x) d x .
$$

(a) Under the assumption that h vanishes at the boundary of Ω, prove that

$$
\frac{\mathrm{d} E(u)}{\mathrm{d} u}=\frac{\partial \mathcal{L}(u, \nabla u)}{\partial u}-\operatorname{div}\left(\frac{\partial \mathcal{L}(u, \nabla u)}{\partial(\nabla u)}\right) .
$$

(b) Which condition must hold true for a minimizer u_{0} of $E(u) \ldots$

- ... in general?
- ... if $\mathcal{L}(u, \nabla u)=\mathcal{L}(u)$?
- ... if $\mathcal{L}(u, \nabla u)=\mathcal{L}(\nabla u)$?

2. Multiview Reconstruction as Shape Optimization

You saw in the lecture that 3D reconstruction from multiple views can be posed as a variational problem. Let $\rho: V \rightarrow[0,1]$ be the photoconsistency function, and $u: V \rightarrow\{0,1\}$ the indicator function of the object to be reconstructed. We want to minimize (see lecture, slide 10)

$$
E(u)=\int_{V} \rho(x)|\nabla u(x)| \mathrm{d} x
$$

under the constraints

$$
\left\{\begin{array}{l}
\int_{R_{i j}} u(x) \mathrm{d} R_{i j} \geq 1 \quad \text { if } \quad j \in S_{i} \\
\int_{R_{i j}} u(x) \mathrm{d} R_{i j}=0 \quad \text { else }
\end{array}\right.
$$

(a) Write down the Euler-Lagrange equation for the given energy $E(u)$.

Gradient descent for energy functionals is performed in analogy to gradient descent on multivariate functions: from an estimate $u^{(k)}(x)$, the estimate in iteration $k+1$ is obtained by going in negative gradient direction:

$$
u^{(k+1)}=u^{(k)}-\tau \frac{\mathrm{d} E(u)}{\mathrm{d} u}
$$

with step size τ. This is a discretization of the differential equation from the lecture.
(b) Write down one gradient descent iteration for $E(u)$.

Part II: Questions

During the tutorial, there will be time for questions about earlier exercise sheets or things from the lecture. Please send us your questions in advance via email (mvg-ss18@vision.in.tum.de).

