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Chapter 3

Image formation

“And since geometry is the right foundation of all painting, I have
decided to teach its rudiments and principles to all youngsters eager
forart...”

— Albrecht Diirer, The Art of Measurement, 1525

This chapter introduces simple mathematical models of the image formation pro-
cess. In a broad figurative sense, vision is the inverse problem of image formation:
the latter studies how objects give rise to images, while the former attempts to use
images to recover a description of objects in space. Therefore, designing vision
algorithms requires first developing a suitable model of image formation. Suit-
able in this context does not necessarily mean physically accurate: the level of
abstraction and complexity in modeling image formation must trade off physi-
cal constraints and mathematical simplicity in order to result in a manageable
model (i.e. one that can be inverted with reasonable effort). Physical models of
image formation easily exceed the level of complexity necessary and appropriate
to this book, and determining the right model for the problem at hand is a form of
engineering art.

It comes as no surprise, then, that the study of image formation has for cen-
turies been in the domain of artistic reproduction and composition, more so than
in mathematics and engineering. Rudimentary understanding of the geometry
of image formation, which includes various models for projecting the three-
dimensional world onto a plane (e.g., a canvas), is implicit in various forms of
visual arts. The roots of formulating the geometry of image formation can be
traced back to the work of Euclid in the 4th century B.C. Examples of partially
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Chapter 3. Image formation 45

correct perspective projection are visible in the frescoes and mosaics of Pompeii
(Figure 3.1) from the 1st century B.C. Unfortunately, these skills seem to have
been lost with the fall of the Roman empire, and it took over a thousand years
for correct perspective projection to emerge in paintings again in the late 14th
century. It was the early renaissance painters who developed systematic meth-
ods for determining the perspective projection of three-dimensional landscapes.
The first treatise on perspective, Della Pictura, was published by Leon Baitista
Alberti, who emphasized the “eye’s view” of the world capturing correctly the
geometry of the projection process. The renaissance coincided with the first at-
tempts to formalize the notion of perspective and place it on a solid analytical
footing. It is no coincidence that early attempts to formalize the rules of perspec-
tive came from artists proficient in architecture and engineering, such as Alberti
and Brunelleschi. Geometry, however, is only a part of the image formation pro-

Figure 3.1. Frescoes from the 1st century B.C. in Pompeii. Partially correct perspective
projection is visible in the paintings. The skill was lost during the middle ages, and it did
not reappear in paintings until the renaissance. (Image courtesy of C. Taylor)

cess: in order to obtain an image, we need to decide not only where to draw a
point, but also what brightness value to assign to it. The interaction of light with
matter is at the core of the studies of Leonardo Da Vinci in the 1500s, and his in-
sights on perspective, shading, color, and even stereopsis are vibrantly expressed
in his notes. Renaissance painters, such as Caravaggio or Raphael, exhibited rather
sophisticated skills in rendering light and color that remain compelling to this day.

In this book, we restrict our attention to the geometry of the scene and, there-
fore, we need a simple geometric model of image formation. We derive it in this
chapter. More complex photometric models are beyond the scope of this book; in
the next two sections as well as in Appendix 3.A at the end of this chapter, we
will review some of the basic notions of radiometry so that the reader can better
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evaluate the assumptions based on which we are able to reduce image formation
to a purely geometric process.

3.1 Representation of images

An image, as far as this book is concerned, is a two-dimensional brightness array. !
In other words, it is a map I, defined on a compact region € of a two-dimensional
surface, taking values in the positive real numbers. For instance, in the case of a
camera, {2 is a planar, rectangular region occupied by the photographic medium
(or by the CCD sensor). So [ is a function

I:QCR? =Ry; (2,y) — I{z,y). (3.1)

Such an image (function) can be represented, for instance, using the graph of I
as in the example in Figure 3.2. In the case of a digital image, both the domain {2
and the range R are discretized. For instance, 2 = [1, 640] x [1,480] C Z? and
R is approximated by an interval of integers [0, 255] C Z.. Such an image can
be represented by an array of numbers as in Table 3.1.

Figure 3.2. An image [ represented as a two-dimensional surface — the graph of 1.

The values of the image I depend upon physical properties of the scene being
viewed, such as its shape, its material reflectance properties, and the distribution
of the light sources. Despite the fact that Figure 3.2 and Table 3.1 do not seem
very indicative of the properties of the scene they portray, this is how they are
represented in a computer. A different representation of the same image that is
better suited for interpretation by the human visual system is obtained by gener-
ating a picture. A picture is a scene — different from the true one — that produces
on the imaging sensor (the eye in this case) the same images as the original scene.

UIf it is a color image, its RGB (red, green, blue) values represent three such arrays.
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188 186 188 187 168 130 101 99 110 113 112 107 117 140 153 153 156 158 156 153
189 189 188 181 163 135 109 104 113 113 110 109 117 134 147 152 156 163 160 156
190 190 188 176 139 115 106 114 123 114 111 119 130 141 154 165 160 156 151
190 188 188 175 158 139 114 103 113 126 112 113 127 133 137 151 165 156 152 145
191 185 189 177 158 138 110 99 112 119 107 115 137 140 135 144 157 163 158 150
193 183 178 164 148 134 118 112 119 117 118 106 122 139 140 152 154 160 155 147
185 181 178 165 149 135 121 116 124 120 122 109 123 139 141 154 156 159 154 147
175 176 176 163 145 131 120 118 125 123 125 112 124 139 142 155 158 158 155 148
170 170 172 159 137 123 116 114 119 122 126 113 123 137 141 156 158 159 157 150
171 171 173 157 131 119 116 113 114 118 125 113 122 135 140 155 156 160 160 152
174 175 176 156 128 120 121 118 113 112 123 114 122 135 141 155 155 158 159 152
176 174 174 151 123 119 126 121 112 108 122 115 123 137 143 156 155 152 155 150
175 169 168 144 117 117 127 122 109 106 122 116 125 139 145 158 156 147 152 148
179 179 180 155 1 121 118 109 107 113 125 133 130 129 139 153 161 148 155 157
176 183 181 153 122 115 113 106 105 109 123 132 131 131 140 151 157 149 156 159
180 181 177 147 115 110 111 107 107 105 120 132 133 133 141 150 154 148 155 157
181 174 170 1471 113 111 115 112 113 105 119 130 132 134 144 153 156 148 152 151
180 172 168 140 114 114 118 113 112 107 119 128 130 134 146 157 162 153 153 148
186 176 171 142 114 114 116 110 108 104 116 125 128 134 148 161 165 159 157 149
185 178 171 138 109 110 114 110 109 97 110 121 127 136 150 160 163 158 156 150

Table 3.1. The image I represented as a two-dimensional matrix of integers (sub-sampled).

In this sense pictures are “controlled illusions™: they are scenes different from the
true ones (they are flat), that produce in the eye the same image as the original
scenes. A picture of the same image I described in Figure 3.2 and Table 3.1 is
shown in Figure 3.3. Although the latter seems more informative on the content
of the scene, it is merely a different representation and contains exactly the same
information.

40 50

T

Figure 3.3. A “picture” of the image I (compare with Figure 3.2 and Table 3.1).

3.2 Lenses, light, and basic photometry

In order to describe the image formation process, we must specify the value of
I{x,y) at each point (z,y) in £. Such a value I{x,y) is typically called image
intensity or brightness, or more formally irradiance. It has the units of power
per unit area (W atts/m?) and describes the energy falling onto a small patch of
the imaging sensor. The irradiance at a point of coordinates (z,y) is obtained by
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integrating energy both in time (e.g., the shutter interval in a camera, or the inte-
gration time in a CCD array) and in a region of space. The region of space which
contributes to the irradiance at (x, 3) depends upon the shape of the object (sur-
face) of interest, the optics of the imaging device, and it is by no means trivial to
determine. In Appendix 3.A at the end of this chapter, we discuss some common
simplifying assumptions to approximate it.

3.2.1 Imaging through lenses

A camera (or in general an optical system) is a set of lenses used to “direct” light.
By directing light we mean a controlled change in the direction of propagation,
which can be performed by means of diffraction, refraction, and reflection. For
the sake of simplicity, we neglect the effects of diffraction and reflection in a lens
system, and we only consider refraction. Even so, a complete description of the
functioning of a (purely refractive) lens is well beyond the scope of this book.
Therefore, we will only consider the simplest possible model, that of a thin lens.
For a more germane model of light propagation, the interested reader is referred
to the classic textbook [Born and Wolf, 1999].

A thin lens (Figure 3.4) is a mathematical model defined by an axis, called
the optical axis, and a plane perpendicular to the axis, called the focal plane,
with a circular aperture centered at the optical center, i.e. the intersection of the
focal plane with the optical axis. The thin lens is characterized by one parameter,
usually indicated by f, called the focal length, and by two functional properties.
The first property is that all rays entering the aperture parallel to the optical axis
intersect on the optical axis at a distance f from the optical center. The point
of intersection is called the focus of the lens (Figure 3.4). The second property
is that all rays through the optical center are undeflected. Now, consider a point

P,

Figure 3.4. The image of the point p is the point @ at the intersection of rays going parallel
to the optical axis and the ray through the optical center.

p € E3 not too far from the optical axis at a distance D along the optical axis
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from the optical center. Now draw, from the point p, two rays: one parallel to
the optical axis, and one through the optical center (Figure 3.4). The first one
intersects the optical axis at the focus, the second remains undeflected (by the
defining properties of the thin lens). Call x the point where the two rays intersect,
and let d be its distance from the optical center. By decomposing any other ray
from p into a component ray parallel to the optical axis and one through the optical
center, we can argue that all rays from p intersect at & on the opposite side of the
Iens. In particular, a ray from « parallel to the optical axis, must go through p.
Using similar triangles, from Figure 3.4, we obtain the following fundamental
equation of the thin lens

L
D

1
7
The point 2 will be called the image” of the point p. Therefore, under the assump-
tion of a thin lens, the irradiance I(x) at the point & with coordinates (z,y) on
the image plane is obtained by integrating all the energy emitted from the region
of space contained in the cone determined by the geometry of the lens, as we
describe in Appendix 3.A.

-

3.2.2 Imaging through a pinhole

If we let the aperture of a thin lens decrease to zero, all rays are forced to go
through the optical center o, and therefore they remain undeflected. Consequently,
the aperture of the cone decreases to zero, and the only points that contribute to
the irradiance at the image point = [z, 3] are on a line through the center o of
the lens. If a point p has coordinates X = [X, Y, Z]7 relative to a reference frame
centered at the optical center o, with its z-axis being the optical axis (of the lens),
then it is immediate to see from similar triangles in Figure 3.5 that the coordinates
of p and its image « are related by the so-called ideal perspective projection

X Y
xTr = —f7’ y = —f7, (3.2)

where f is referred to as the focal length. Sometimes we simply denote the
projection as a map ™

RS RYL X — . (3.3)

We also often write & = m(p). Note that any other point on the line through o and
p projects onto the same coordinates & = [z, y]?. This imaging model is called
an ideal pinhole camera model. It is an idealization of the thin lens model since,
when the aperture decreases, diffraction effects become dominant and therefore
the (purely refractive) thin lens model does not hold [Born and Wolf, 1999]. Fur-
thermore, as the aperture decreases to zero, the energy going through the lens

2Here the word “image” is to be distinguished from the irradiance image I (a) introduced before.
Whether “images” indicates @ or I(a) will be made clear by the context.
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image plane

Figure 3.5. Pinhole imaging model: The image of the point p is the point x at the intersec-
tion of the ray going through the optical center o and an image plane at a distance f away
from the optical center.

also becomes zero. Although it is possible to build pinhole cameras, from our
perspective the pinhole model will be just a good geometric approximation of a
well-focused imaging system.

Notice that there is a negative sign in each of the formulae (3.2). This makes the
image of an object appear to be upside down on the image plane (or the retina).
To eliminate this effect, we can simply flip the image: (z,v) — (—x, —y). This
corresponds to placing the image plane {z = —f} in front of the optical center
instead: {z = + f}. In this book we will adopt this more convenient “frontal” pin-
hole camera model, illustrated in Figure 3.6. In this case, the image z = [z,y]”

~~
image plane

Figure 3.6. Frontal pinhole imaging model: The image of a 3-D point p is the point x at the
intersection of the ray going through the optical center o and an image plane at a distance
f in front of the optical center.
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of the point p is given by

X

iL':fE,

Y
y=1/7. (3.4)

We often use the same symbol, x, to denote the homogeneous representation
[fX/Z, fY]Z,1]T € R3, as long as the dimension is clear from the context.?

In practice, the size of the image plane is usually limited, hence not every point
p in space will generate an image « inside the image plane. We define the field
of view (FOV) to be the angle subtended by the aperture of the image plane seen
from the optical center. If r is the radius of the plane, then the field of view is
6 = 2arctan(r/f). Notice that if a flat plane is used as the image plane, the
angle @ is always less than 180°4.

In Appendix 3.A we give a concise description of a simplified model to de-
termine the intensity value of the image at the position @, I (). This depends
upon the ambient light distribution, the material properties of the visible surfaces
and their geometry. There we also show under what conditions this model can
be reduced to a purely geometric one, where the intensity measured at a pixel is
identical to the amount of energy radiated at the corresponding point in space,
independent of the vantage point, e.g., a Lambertian surface. Under these condi-
tions, the image formation process can be reduced to tracing rays from surfaces in
space to points on the image plane. How to do so is explained in the next section.

3.3 A geometric model of image formation

As we have seen in the previous section, under the assumptions of a pinhole cam-
era model and Lambertian surfaces, one can essentially reduce the process of
image formation to tracing rays from points on objects to pixels. That is, know-
ing which point in space projects onto which point in the image plane allows one
to directly associate the radiance at the point to the irradiance of its image — see
equation (3.29) in Appendix 3.A. In order to establish a precise correspondence
between points in 3-D space (with respect to a fixed global reference frame) and
their projected images in a 2-D image plane (with respect to a local coordinate
frame), a mathematical model for this process must account for three types of
transformations:

1. Coordinate transformations between the camera frame and the world frame;

2. Projection of 3-D coordinates onto 2-D image coordinates;

3In the homogeneous representation, it is only the direction of the vector a that is important. It is
not crucial to normalize the last entry to 1 (see Appendix 3.B). In fact @ can be represented by A.X for
any non-zero A € R as long as we remember that any such vector uniquely determines the intersection
of the image ray and the actual image plane, in this case {Z = [}.

“In case of a spherical or ellipsoidal imaging surface, common in omni-directional cameras, the
field of view can often exceed 180°.
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3. Coordinate transformation between possible choices of image coordinate
rame.

In this section we will describe such a (simplified) image formation process as a
series of transformations of coordinates. Inverting such a chain of transformations
is generally referred to as “camera calibration”, which is the subject of Chapter 6
and also a key step to 3-D reconstruction.

3.3.1 Anideal perspective camera

Let us consider a generic point p, with coordinates Xy = [X, Yp, ZO]T e R?
relative to the world reference frame’. As we know from Chapter 2, the coordi-
nates X = [X,Y, Z]T of the same point p relative to the camera frame are given
by a rigid body transformation g = (R, T) of X

X =RX,+T R

Adopting the frontal pinhole camera model introduced in the previous section
(Figure 3.6), the point X is then projected onto the image plane at the point

- []-48]

In homogeneous coordinates, this relationship can be written as

x f 0 0 0 if
Zlyl=10 f 0 O 7 3.5)
1 0 0 1 0
1
We can rewrite the above equation equivalently as
f 0 0 0
Ze=1|0 f 0 0| X (3.6)
0 0 1 0

where X = [X,Y, Z,1]7 and = = [z, y, 1]7 are now in homogeneous represen-
tation. Since the coordinate Z (or the depth of the point p) is usually unknown,
we may simply denote it as an arbitrary positive scalar A € R. Also notice that
in the above equation we can decompose the matrix into

f 0 0 0 f 0 0]t 000
0 f 00/=|0 fofl0o100
00 1 0 00 1[0 0 1 0

SWe often indicate with X¢ the coordinates of the point relative to the initial position of a moving
camera frame.
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Define two matrices

f 0 0 1 000
K;=|0 f 0| eR¥3 TIh,=[0 1 0 0| ¢ R4 3.7
0 0 1 0010

The matrix Il is often referred to as the standard projection matrix. Also notice
that from the coordinate transformation we have for X = [X,Y, Z,1]7

= Ol . (3.8)
z 0 1] [ %o
1 1

To summarize, using the above notation, the overall geometric model for an
ideal camera can be described as

z f 0 0]t 00 0][R T )}(}’
AMyl=10 7 0l]l0o 1 0 0 ZO ,
1 0 0 1[0 0 1 of]o0 1 10
or in matrix form
Ax = KfHQX = KfH()gXQ. (39)

If the camera focal length f is known and hence can be normalized to 1, this
model reduces to a Euclidean transformation g followed by a standard projection
HQ, i.e.

\ e =X = MygXo. (3.10)

3.3.2 Camera with intrinsic parameters

The ideal model of equation (3.9) is specified relative to a very particular choice
of reference frame. In practice, when one captures images with a digital camera
the measurements are obtained in terms of pixels (i, 5), with the origin of the
image coordinate frame typically in the upper-left corner of the image. In order
to render the model (3.9) usable, we need to specify the relationship between the
canonical retinal plane coordinate frame and the pixel array.

The first step consists of specifying the units along the x and y axes: if z and y
are specified in terms of metric units (e.g., millimeters), and x5, ys are scaled ver-
sion that correspond to coordinates of a particular pixel, then the transformation
from coordinates x to coordinates &, can be described by a scaling matrix

Rl a)

that depends on the size of the pixel (in metric units) along the = and y direc-
tions (Figure 3.7). When s, = s,, each pixel is square. In general, they can be
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different and then the pixel is rectangular. However, here x, and y, are still spec-
ified relative to the principal point (where the z-axis intersects the image plane),
whereas the pixel index (4, §) is conventionally specified relative to the upper-left
corner, and is conventionally indicated by positive numbers. Therefore, we need
to translate the origin of the reference frame to this corner (as shown in Figure
3.7)

/
r = Is+ 0,

Yy = ys+oy

where (0., 0,) are the coordinates (in pixels) of the principal point relative to
the image reference frame. So the actual image coordinates are given by the vec-
tor ' = [2/,9]7 € R? instead of the ideal image coordinates z = [x,y]7.
The above steps of coordinate transformation can be written in the homogeneous
representation as

x’ se 0 o] |z
=y =10 s, oy |y (3.12)
1 0 0 1 1

where 2’ and ¢’ are actual image coordinates in pixels. This is illustrated in Figure
3.7. In case the pixels are not rectangular, a more general form of the scaling

=& g

©00) T
Z |-t
O ’,
-7 x

y’ M Ell K )

L-1" Y normalized coordinates

- 7 Sy

UsY

Sz pixel coordinates
Figure 3.7. Transformation from normalized coordinates to coordinates in pixels.

matrix can be considered

Sz S 2x2
[0 SJ <R

where sg is called a skew factor and proportional to cot(6), where 6 is the angle
between the image axes x, and y,°. The transformation matrix in (3.12) then takes

Typically, the angle @ is very close to 90°, and hence sg is very close to zero.
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a general form of

Sz Se Og
Ki= 1|0 s, o, € R¥3 (3.13)
0 0 1

In many practical applications it is common to assume that sy = 0.

Remark 3.1 (Radial distortion). In addition to linear distortions described by
the above parameters, in case a wide angle of view is used for the camera, one
can often observe image distortions along radial directions. Radial distortion is
typically modeled as

r = x4(1+ar? +ayr?),
= yq(1+a1r? + agr?),

where (24, yq) are coordinates of the distorted points, 7° = 2% + y2 and a1, as
are then considered additional camera parameters. However, for simplicity, in this
book we will assume that radial distortion has been compensated for, see Figure
3.8. The reader can refer to [Tsai, 1986a] and references given at the end of this
chapter for more details on how to compensate for radial distortion.

Figure 3.8. Left: image taken by a typical camera; Right: image with radial distortion
compensated for.

Now, combining the projection model from the previous section with the scaling
and translation yields a more realistic model of a transformation between homo-
geneous coordinates of a 3-D point relative to the camera frame and homogeneous
coordinates of its image expressed in terms of pixels

x’ sz se og| |f O O] [1 0 0 O ‘;{
Ay | =10 sy o4 [0 f O[]0 1 0 0 7
1 0 0 1 0 0 1710 0 1 0O 1
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Notice that, in the above equation, the effect of a real camera is in fact carried
through two stages:

e The first stage is a standard perspective projection with respect to a normal-
ized coordinate system (as if the focal length f = 1). This is characterized
by the standard projection matrix Iy = [I,0].

e The second stage is an additional transformation (on the so obtained image
a) which depends on parameters of the camera such as the focal length f,
the scaling factors s, s, and sg and the center offsets o0, 0.

The second transformation is obviously characterized by the combination of the
two matrices K, and K¢

sz se oz| |f 0 O fse fso o0z
K=KK;=|0 s, o] |0 f Ol =|0 fs, o,]. (314
0 0 1 0 0 1 0 0 1

The coupling of K, and K allows us to write the projection equation in the
following way

fsz fse oz| |1 0 0 O
M =KI(X=|0 fs, o,/ [0 1 0 0
0 0 1 0 010

X
Y
z (3.15)
1

The constant 3 x 4 matrix Iy represents the perspective projection. The upper-
triangular 3 x 3 matrix K collects all parameters that are “intrinsic” to a particular
camera, and is therefore called the intrinsic parameter matrix, or the calibra-
tion matrix of the camera. Entries of the matrix K have the following geometric
interpretation:

e 0,: z-coordinate of the principal point in pixels,

e 0,: y-coordinate of the principal point in pixels,

e fs, = «,: size of unit length in horizontal pixels,
e fs, = a,: size of unit length in vertical pixels,

e /o, aspect ratio .

e fsy: skew of the pixel, often close to zero.

Note that horizontal dimension of pixels is not necessarily the same vertical one
unless the aspect ratio o = 1.

When the calibration matrix KX is known, the calibrated coordinates & can be
obtained from the pixel coordinates ' by a simple inversion of K

X

1000
A=)’ =1,X=1(0 1 0 0 (3.16)
001 0

Y
VA
1
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The information about the matrix K can be obtained through the process of cam-
era calibration to be described in Chapter 6. The normalized coordinate system
corresponds to the ideal pinhole camera model with the image plane located in
front of the center of projection and the focal length f equal to 1.

To summarize, the geometric relationship between a point of coordinates
X = [Xo, Yo, Zo, 1]7 relative to the world frame and its corresponding image
coordinates ' = 2/, 3/, 1] (in pixels) depends on the rigid body motion (R, T
between the world frame and the camera frame (sometimes referred to as the ex-
trinsic calibration parameters), an ideal projection Il, and the camera intrinsic
parameters K. The overall model for image formation is therefore captured by
the following equation

! fsx fse oz |1 0 O O| |R T i(,o
My |=10 fs, o]0 1 0 0 ZO
1 0 0 1|]0 0 1 0]]o0 1 10
In matrix form, we can write
A’ = KTIp X = KIIygXo, 3.17)
or equivalently
A’ = Ky X = [KR, KT X,. (3.18)

Very often, for convenience, we call the 3 x 4 matrix KTlpg = [KR,KT| a
(general) projection matrix 11, to be distinguished from the standard projection
matrix ITy. Hence, the above equation can be simply written as

/\.')3/ = HXO = KH()gXO (3]9)

Compared to the ideal camera model (3.10), the only change here is the standard
projection matrix Iy being replaced by a general one I1.

At this stage, in order to explicitly see the nonlinear nature of the above per-
spective projection equation, we can divide equation (3.19) by the scale A and
obtain the following expressions for the image coordinates ' = (', y/)

’ W?XO ' WgXO

= = 3.20
r 7T3TX0 ’ Yy ﬂ_%“XO ( )

where i 7l 7l € R* are the three rows of the projection matrix 1.

Example 3.2 (Spherical perspective projection). The perspective pinhole camera model
outlined above considers planar imaging surfaces. An alternative imaging surface which is
also commonly used is that of a sphere, shown in Figure 3.9. This choice is partly moti-
vated by retina shapes often encountered in biological systems. For spherical projection, we
simply choose the imaging surface to be the unit sphere S* = {p € R* | || X (p)|| = 1}.
Then, the spherical projection is defined by the map 7 from R® to $2

X

WS:RBHSQ; X —xr=—.
[l X1
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>73\‘o

image sphere

Figure 3.9. Spherical perspective projection model: The image of a 3-D point p is the point
a at the intersection of the ray going through the optical center o and a sphere of radius r
around the optical center. 7 is typically chosen to be 1.

Similarly to the case of planar perspective projection, in general the relationship between
the coordinates of 3-D points and their image projections can be expressed as

Mx’ = KTIp X = KTlogXo (3.21)

where the scale A = v/ X2 + Y2 + Z2 in the case of spherical projection (while A = Z in
the case of planar projection). Therefore, mathematically, spherical projection and planar
projection can be described by the same set of equations. The only difference is that the
unknown (depth) scale A takes different values. u

For convenience, we often denote « ~ y for two (homogeneous) vectors x and
y equal up to scale (see Appendix 3.B for more detail). From the above example,
we see that for any perspective projection we have

' ~ 1Xy= KIygXo (3.22)

and the shape of the imaging surface chosen does not matter. The imaging sur-
face can be any (regular) surface as long as any ray o p intersects with the surface
at one point at most. For example an entire class of ellipsoidal surfaces can be
used, which leads to the so-called catadioptric model popular in many omnidi-
rectional cameras. In principle, all so-obtained images contain exactly the same
information.

3.3.3 Image, pre-image, and co-image of points and lines

The preceding sections have formally established the notion of a perspective
image of a point. In principle, this allows us to define an image of any other
geometric entity in 3-D that can be defined as a set of points (e.g. a straight line or
a plane). Nevertheless, as we have seen from the example of spherical projection,
even for a point, there exist seemingly different representations for its image: Two
vectors € R® and y € R® may represent the same image point as long as they
differ by a non-zero scale, i.e. * ~ y (as a result of different choices in the imag-
ing surface). To avoid possible confusion that can be caused by such different
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representations for the same geometric entity, we introduce a few abstract notions
related to the image of a point or a line.

Consider the perspective projection of a straight line L in 3-D onto the 2-D
image plane (Figure 3.10). To specify a line in 3-D, we can typically specify

image plane

Figure 3.10. Perspective image of a line L in 3-D. The collection of images of points on
the line form a plane P. Intersection of this plane and the image plane gives a straight line
£ which is the image of the line.

a point p,, the so-called “base point”, on the line and specify a vector v that
indicates the direction of the line. Suppose that X, = [X,,Y,, Z,, 1]7 are the
homogeneous coordinates of the base point p, and V' = [V}, V5, V5,0]7 € R4
is the homogeneous representation of v, relative to the camera coordinate frame.
Then the (homogeneous) coordinates of any point on line L can be expressed as

X=X,+uV, uekR.

Then, the image of the line L is given by the collection of image points with
homogeneous coordinates given by

€T ~ HOX :HQ(XO+MV) :H0XO+MH0V.

It is easy to see that this collection of points {x}, treated as vectors with origin at
o0, span a 2-D subspace P, shown in Figure 3.10. The intersection of this subspace
with the image plane gives rise to a straight line in the 2-D image plane, also
shown in Figure 3.10. This line is then the (physical) image of the line L.

Now the question is how to efficiently represent the image of the line. For this
purpose, we first introduce the notion of “pre-image”:

Definition 3.3 (Pre-image). A pre-image of a point or a line in the image plane
is the set of 3-D points that give rise to an image equal to the given point or line.

Note that the given image is constrained to lie in the image plane, whereas the
pre-image lies in 3-D space. In the case of a point  on the image plane, its pre-
image is a one-dimensional subspace, spanned by the vector joining the point =
to the camera center o. In the case of a line, the pre-image is a plane P through
o (hence a subspace) as shown in Figure 3.10, whose intersection with the image
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plane is exactly the given image line. Such a plane can be represented as the
span of any two linearly independent vectors in the same subspace. Thus the pre-
image is really the largest set of 3-D points or lines which give rise to the same
image. The definition of a pre-image can be given not only for points or lines in
the image plane but also for curves or other more complicated geometric entities
in the image plane as well. However, when the image is a point or a line, the
pre-image is a subspace, and we may also represent this subspace by its (unique})
orthogonal complement in R3. For instance, a plane can be represented by its
normal vector. This leads to the following notion of “co-image™:

Definition 3.4 (Co-image). The co-image of a point or a line is defined to be the
subspace in R which is the (unique) orthogonal complement of its pre-image.

The reader must be aware that the image, pre-image, and co-image are
equivalent representations since they uniquely determine one another:

image = pre-image N image plane, pre-image = span(image),

pre-image = co-image, co-image = pre-image".

Since the pre-image of a line L is a two-dimensional subspace, its co-image is
represented as the span of the normal vector to the subspace. The notation we use
for this is £ = [a, b, c]7 € R?® (Figure 3.10). If z is the image of a point p on this
line, then it satisfies the orthogonality equation

'z =0. (3.23)

Recall that we use i € R3*3 to denote the skew-symmetric matrix associated to
a vector u € R?. Its column vectors span the subspace orthogonal to the vector u.
Thus the column vectors of the matrix £ span the plane which is orthogonalto £,
i.e. they span the pre-image of the line L. In Figure 3.10, this means P = span(Z).
Similarly, if « is the image of a point p, its co-image is the plane orthogonal to «
given by the span of the column vectors of the matrix Z. Thus, in principle, we
should use the notation in Table 3.2 below to represent the image, pre-image, or
co-image of a point or a line.

Notation| Image | Pre-image | Co-image |

Point | span(x)N image plane | span(x) C R* | span(z) C R3

Line span(£)N image plane | span(£) C R3 | span(¢) C R3

Table 3.2. The image, pre-image, and co-image of a point and a line.

Although the (physical) image of a point or a line, strictly speaking, is a notion
that depends on a particular choice of imaging surface, mathematically it is more
convenient to use its pre-image or co-image to represent it. For instance, we will
use the vector &, defined up to scale, to represent the pre-image (hence the image)
of a point; and the vector £, defined up to scale, to represent the co-image (hence
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the image) of a line. The relationships between pre-image and co-image of points
and lines can be expressed in terms of the vectors «, £ € R® as

zx = 0, e =0.

Often, for a simpler language, we may refer to either the pre-image or co-image
of points and lines as the “image” if its actual meaning is clear from the context.
For instance, in Figure 3.10, we marked in the image plane the image of the line
L by the same symbol £ as the vector typically used to denote its co-image.

3.4 Summary

In this chapter, perspective projection is introduced as a model of the image for-
mation for a pinhole camera. In the ideal case (e.g., when the calibration matrix
K is the identity), homogeneous coordinates of an image point are related to their
3-D counterparts by an unknown (depth) scale A,

Ax = H()X = H()gX().

If K is not the identity, the standard perspective projection is augmented by an
additional linear transformation K on the image plane

' = Kez.

This yields the following relationship between coordinates of an (uncalibrated)
image and their 3-D counterparts

)\IB/ = KHOX = KH()QXQ.

As equivalent representations for an image of a point or a line, we intro-
duced the notions of image, pre-image, and co-image, whose relationships were
summarized in Table 3.2.

3.5 Exercises

Exercise 3.1 Show that any point on a line through p projects onto the same coordinates.

Exercise 3.2 Consider a thin lens imaging a plane parallel to the lens at a distance d
from the focal plane. Determine the region of this plane that contributes to the image I
at the point . (Hint: consider first a one-dimensional imaging model, then extend to a
two-dimensional image).

Exercise 3.3 (Field of view). An important parameter of the imaging system is the field of
view (FOV). The field of view is the twice the angle between the optical axis (z-axis) and
the end of the retinal plane (CCD array). Imagine having a camera system with focal length
24mm, and retinal plane (CCD array) (16mm X 12mm) and that your digitizer samples
your imaging surface at 500 x 500 pixels in horizontal and vertical direction.

1. Compute the FOV.
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2. Write down the relationship between the image coordinate and a point in 3-D space
expressed in the camera coordinate system.

3. Describe how the size of the FOV related to the focal length and how it affects the
resolution in the image.

4. Write a Matlab program which simulates the geometry of the projection process;
given an object (3-D coordinates of the object in the camera frame), create an image
of that object. Experiment with changing the parameters of the imaging system.

Exercise 3.4 (Calibration matrix). Compute the calibration matrix K which represents
the transformation from image I to I’ as shown in Figure 3.11. Note that, from the def-
inition of the calibration matrix, you need to use homogeneous coordinates to represent
points on the images. Suppose that the resulting image I’ is further digitized into an ar-

( l, )
(640,480)

Figure 3.11. Transformation of a normalized image into pixel coordinates.

ray of 640 x 480 pixels and the intensity value of each pixel is quantized to an integer
in [0, 255]. Then how many different digitized images one can possibly get from such a
process?

Exercise 3.5 (Image cropping). In this exercise, we examine the effect of cropping an
image from a change of coordinate viewpoint. Compute the coordinate transformation
between pixels (of same points) between the two images in Figure 3.12. Represent this
transformation in homogeneous coordinates.

(320,0) x

it

(640,480) (640,480)

Figure 3.12. An image of size 640 x 480 pixels is cropped by half and then the resulting
image is up-sampled and restored as a 640 x 480 images.
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Exercise 3.6 (Approximate camera models). The most commonly used approximation
to the perspective projection model is the so-called orthographic projection. The light rays
in the orthographic model travel along lines parallel to the optical axis. The relationship
between image points and 3-D points in this case is particularly simple: z = X;y = Y.
So, the geometric model for an “orthographic camera” can be expressed as

X
36 2 4]
or simply in matrix form
z=1X (3.25)
where II, = [I2x2,0] € R2*3. A scaled version of the orthographic model leads to the

so-called weak-perspective model
x = sll, X. (3.26)

Show how (scaled) orthographic projection approximates perspective projection when the
scene occupies a volume whose diameter (or depth variation of the scene) is small com-
pared to its distance from the camera. Characterize at least one more conditions under
which the two projection models produce similar results (equal in the limit).

Exercise 3.7 (The scale ambiguity). It is common sense that, with a perspective camera,
one can not tell an object from another object which is exactly twice as big but twice as
far. This is a classic ambiguity introduced by the perspective projection. Please use the
ideal camera model to explain why this is true. Is the same also true for the orthographic
projection? Explain.
Exercise 3.8 (Image of lines and their intersection). Consider the image of a line L
(Figure 3.10).
1. Show that there exists a vector in R?, call it £, such that
le=0

for the image « of every point on the line L. What is the geometric meaning of the

vector £7 (Note that the vector £ is only defined up to an arbitrary scale.)
2

2. If the images of two points on the line L are given, say «’,
in terms of ! and 2.

, express the vector £

3. Now suppose you are given two images of two lines, in the above vector form £, £2.
If @ is the intersection of these two image lines, express @ in terms of £1, £2.

Exercise 3.9 (Vanishing points). A straight line in the 3-D world is projected onto a
straight line in the image plane. The projections of two parallel lines intersect in the image
plane at the so-called vanishing point.

1. Show that projections of parallel lines in 3-D space intersect at a point in the image.

2. Compute, for a given family of parallel lines, where in the image the vanishing point
will be.

3. When does the vanishing point of the lines in the image plane lie at infinity (i.e. they
do not intersect)?
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The reader may refer to Appendix 3.B for a more formal introduction to vanishing points
as well as their mathematical interpretation.

3.A Basic photometry with light sources and surfaces

In this section we give a concise description of a basic photometric image forma-
tion model, and show that some simplifications are necessary in order to reduce
the model to a purely geometric one, as described in this chapter. The idea is to
describe a model of how the intensity at a pixel on the image is generated. Under
suitable assumptions, such intensity can be related geometrically to the amount of
energy radiated from visible surfaces in space.

Let S be a smooth surface patch in space; we indicate the tangent plane to the
surface at a point p by 7 and the outward unit normal vector by v. At each point
p € S we can construct a local coordinate frame with its origin at p, its z-axis
parallel to the normal vector v, and its zy-plane parallel to 7 (see Figure 3.13).

Figure 3.13. Generative model

The change of coordinates between the local coordinate frame at p and the
camera frame (which we assume coincides with the world frame) is indicated by
9p; gp maps coordinates in the local coordinate frame at p into those in the camera
frame and any vector u in the local coordinate frame to a vector v = g,_(u) in

the camera frame’.

TWe recall from the previous chapter that, if we represent the change of coordinates ¢ with a
rotation matrix R € SO(3) and a translation vector T', then the action of ¢ on a point p of coordinates
X € R3is given by g(X) = RX + T, while the action of g on a vector of coordinates u is given
by g«(u) = Ru.
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Consider then a distribution of energy dE over a compact region of a surface
in space L (the light source). For instance, L. can be the hemisphere and dF be
constant in the case of diffuse light on a cloudy day, or L could be a distant point
and dFE a delta-measure in the case of sunlight on a clear day (see Figure 3.13).
The effects of the light source on the point p € S can be described using the
infinitesimal energy dE(l,) radiated from L to p along a direction (unit vector)
l,. The total energy reaching p, assuming additivity of the energy transport, is
E(p) = [, dE(l,) which, of course, depends upon the point p in question. Note
that there could be several light sources, including indirect ones (i.e. other objects
reflecting energy onto S).

Scene radiance and image irradiance

The portion of energy coming from a direction [, that is reflected onto a direction
a, (i.e. the direction of the vantage point) is described by G(x,, [, ), the bidirec-
tional reflectance distribution function (BRDF). Here both ¢, and [, are vectors
expressed in local coordinates at p. The energy that p reflects onto x, is therefore
obtained by integrating the BRDF against the energy distribution

Elxp,p) = /r Blaxp, 1) dE(,) (3.27)

which depends upon the direction &, and the point p € S, as well as on the energy
distribution F of the light source L.

In order to express the direction &, in the camera frame, we consider the change
of coordinates from the local coordinate frame at the point p to the camera frame:
X(p) = gp(0)andx ~ g, (x,) where® we note that g, is a rotation. Note that
here x depends on x;,, while X depends on p. The reader should be aware that the
transformation g,, itself depends on local shape of the surface at p, in particular
its tangent plane 7 and its normal v at the point p. We now can rewrite equation
(3.27) in terms of the camera coordinates and obtain the so-called radiance® of
the point p

R(X) = E(gp 1 (), X (p)), where = =7m(X). (3.28)

Suppose that our (ideal) imaging sensor can measure the amount of energy re-
ceived along the direction x, say the pinhole model, so that the image brightness
I at « is a genuine copy of the radiance from the point p, i.c.

I{z) = R(X), where z =n(X). (3.29)

8The symbol “ ~ ™ indicates equality up to scale. Strictly speaking, & and 9p.. (@) do not rep-
resent the same vector, but only the same direction (they have opposite sign and different lengths).
However, they do represent the same ray through the camera center, and therefore we will regard them
as the same. In order to obtain the same embedded representation (i.e. a vector in R? with the same
coordinates), we would have to write & = w(—gp, (®p)).

9In radiometry, the radiance is typically used to describe light energy radiated from a light source
and irradiance to describe light energy received by a surface. In our case, the surface in space has the
role of the “light source” and the image plane (in the camera) is receiving light.
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In radiometry, [ is called the image irradiance, while R is called the scene radi-
ance. The above equation is called the irradiance equation. If the optical system
is not well modeled by a pinhole, one would have to explicitly model the thin
lens, and therefore integrate not just along the direction @, but along all direc-
tions in the cone determined by the current point and the geometry of the lens.
For simplicity, we restrict our attention o the pinhole model.

Notice that R in (3.28) depends upon the shape of the surface S, represented by
its location p and surface normal v, but it also depends upon the Tight source L, its
energy distribution E' and the reflectance properties of the surface S, represented
by the BRDF . Making this dependency explicit we write

I{x) = /Lﬂ(gpzl(az),lp) dE(l,), where x =7(X) (3.30)

which we indicate in short-hand notation as I(x) = R(p;v, 3, L, E) where we
emphasize the dependence on v, 8, L, E in addition to p.

When images are taken from different vantage points, one has to consider the
change of coordinates g relative to the world reference frame. Assuming that the
world frame coincides with the camera frame of the first image 1, we can obtain
a new image [ by moving with g (see Figure 3.13). The coordinates of the point
p in the first and second camera frames are related by X, = g(X1) = g{(g,(0)).
More generally, let g;, ¢ = 1,2,...,m denote the coordinate transformation from
the local frame at p to the it camera frame, then we have X; = ¢:(0) and x; ~
gi+(p). Following our previous derivation, the scene radiance in the direction of
each view is given by

Rl(XZ) = Rl(pa gi5 U?ﬁ?-L?E) = 5((91)*_1(:31),X(p))
and the image irradiance is
Il(mz) = RI(XZ) = Rl(p’ gi5 U?ﬁ?-L?E)
for an ideal pinhole camera model.

Lambertian surfaces

The above model can be considerably simplified if we restrict our attention to a
class of materials, called Lambertian, that do not change appearance depending
on the vantage point. Marble and other matte surfaces are to a large extent well
approximated by the Lambertian model since they diffuse light almost uniformly
in all directions. Metal, mirrors and other shiny surfaces, however do not. Figures
3.14 illustrates a few common surface properties.

For the Lambertian model, the BRDF j3(x,,, 1,,} only depends on how the sur-
face faces the light source, but not from where it is viewed. Therefore, ﬁ(mp, lp)
is actually independent of x,, and we can think of the radiance function as be-
ing “glued”, or “painted” on the surface S, so that at each point p the radiance
‘R only depends on the surface, and not explicitly on the light source. Hence, the
perceived irradiance on the image will only depend on which point on the surface
is seen but not from the vantage point. More precisely, for Lambertian surfaces,
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Figure 3.14. This figure demonstrates different surface properties widely used in computer
graphics to model surfaces of natural objects: Lambertian (ambient), diffuse, reflective,
specular (highlight), transparent (with refraction), and textured. Only the (wood textured)
pyramid has a purely Lambertian surface (hence looks a little dull). The blue ball is partly
ambient, diffuse, reflective and specular. The checkerboard floor is partly ambient, diffuse
and reflective. The glass ball is both reflective and transparent.

we have

ﬁ(mpa lp) = p(p)<lp’ Vp>

where recall that v, is the normal vector to the surface and p € Ry is a scalar
called surface albedo that indicates percentage of light diffused by the surface at
the point p. Note that the inner product {l,, v,,) is nothing but the cosine of the
angle between the two vectors [, and v,; the above equation is also called the
Lambertian cosine law.

Such a BRDF g is clearly independent of x,,, and hence the radiance

R(X(p)) = / o) {lps vp) dE(ly)

will only depend on p but no longer on the vantage point g,. Since v, is the
normal vector, which is determined by the geometry of the surface at p, knowing
the position of the generic point p € S one can differentiate it to compute the
tangent plane. Therefore, effectively, the radiance R only depends on the surface
S, described by its generic point p. Finally, for a pinhole model, the irradiance

I{z) =R(X) = / p(p)lp, vp) dE(lp) (3.31)
I.
where & = 7(X (p)) will also only depend on (the geometry of) the visible sur-
face and nothing else. In all subsequent sections (and chapters) we will adopt this
simple model. The fact that the brightness I does not change with vantage point
for Lambertian surfaces constitutes a fundamental condition that allows to estab-
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lish correspondence across multiple images of the same object. This condition
and its implications will be studied in more detail in the next chapter.

3.B Image formation in the language of projective
geometry

The perspective pinhole camera model described by (3.18) or (3.19) has retained
the physical meaning of all parameters involved. In particular, the last entry of
both «” and X is normalized to 1 so that the other entries may correspond to ac-
tual 2-D or 3-D coordinates (with respect to the metric unit chosen for respective
coordinate frames). However such normalization is not always necessary as long
as we know it is the direction of those homogeneous vectors that matters. For
instance, the two vectors

X, v,z,10%, [Xwyw,zw,w|f eRr* (3.32)

can be used to represent the same point in R3. Similarly, we can use [z’,y/, 2']7
to represent a point [z, %, 1]7 on the 2-D image plane as long as z’/z’ = x and
y' /2’ = y. However, we may run into trouble if the last entry W or z’ hap-
pens to be 0. To resolve this problem, we may generalize the interpretation of

homogeneous coordinates introduced in the previous chapter.

Definition 3.5 (Projective space and its homogeneous coordinates). A 7-
dimensional projective space P" is the set of one-dimensional subspaces (i.e.
lines through the origin) of the vector space R**. A point p in P™ can then
be assigned homogeneous coordinates X = [z, 29,...,2,,1]7 among which
at least one x; is non-zero. For any non-zero A € R the coordinates Y =
A1, A2, ..., \ony1]T represent the same point p in P*. We say X and'Y are
equivalent, denoted as X ~ Y.

In this book we try to limit the use of an abstract projective representation.
As shown by examples below, this resolves certain limitation caused by the
conventional choice of a (flat) image plane.

Example 3.6 (Topological models for the projective space P?). Figure 3.15 demon-
strates two equivalent geometric interpretations of the 2-D projective space P2. According
to the definition, it is simply a family of 1-D lines {L} in R® through a point o (typically
chosen to be the origin of the coordinate frame). Hence, P2 can be viewed as a 2-D sphere
S? with any pair of antipodal points (e.g., p and p’ in the figure) identified as one point in
IP2. On the right hand side of Figure 3.15, lines through the center o in general intersect
with the plane {z = 1} at a unique point except when they lie on the plane {z = 0}. Lines
in the plane {z = 0} simply form the 1-D projective space P* (which is in fact a circle).
Hence, P? can be viewed as a 2-D plane R? (i.e. {z = 1}) with a circle P* attached. If we
view that lines in the plane {z = 0} intersect the plane {z = 1} infinitely far, this circle
P! then represents a line ar infinity. Homogeneous coordinates for a point on this circle
then take the form [z, y, 0]7; on the other hand all regular points in R? have coordinates
[z,y,1]7. In general, any projective space P™ can be visualized in a similar way: F* is
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Figure 3.15. Geometric models for P2

then R® with a plane R? attached at infinity; and P™ is R™ with R" ! attached at infinity,
which is however harder to illustrate on a piece of paper. ]

Using this definition, R™ with its homogencous representation can then be
identified as a subset of P which includes exactly those points with coordinates
X = [21,22,...,2n41]" where 2,41 # 0. Therefore we can always normalize
the last entry to 1 by dividing X with x,,4; if we so wish. Then, in the pin-
hole camera model described by (3.18) or (3.19), Az’ and &' now represent the
same projective point in P2 and therefore the same 2-D point in the image plane.
Suppose that the projection matrix is

Il =Ky = [KR,KT] R (3.33)

Then the camera model simply reduces to a projection from a three-dimensional
projective space P? to a two-dimensional projective space P2

7:PP 5P X,— a2 ~ [IX, (3.34)

where ) is omitted here since the equality “~” is defined in the homogeneous
sense, i.e. up to a non-zero scale.

Intuitively, the remaining points in P? with the coordinate x4 = 0 can be
interpreted as points that are “infinitely far away from the origin”. This is because,
for a very small value e, if we normalize the last entry of X = [X,Y, Z,¢]” to
1, it gives rise to a point in R?* with 3-D coordinates X = [X/¢e,Y /¢, Z/e]T. The
smaller |¢| is, the farther away the point from the origin. In fact, all points with
coordinates [X, Y, Z,0]7 form a two-dimensional plane at infinity'®. We usually
denote this plane as P.,. Thatis

P =P*\ R

4th

107t is two dimensional because X, Y, Z are not totally free: the coordinates are only determined
up to scale.
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Then the above imaging model (3.34) is well-defined on the entire projective
space IP? including points in this plane at infinity. This slight generalization allows
us to talk about images of points that are infinitely far away from the camera.

Example 3.7 (Image of points at infinity and ‘“vanishing points™). Two parallel lines
in R? do not intersect. However, we can view them as intersecting at infinity. Let V =
V1, Va, V3,0]7 € R* be a (homogeneous) vector indicating the direction of two parailel
lines L', L% Let X! = [X}, Y}, 22, 1)7 and X2 = [X2,Y2, Z2,1]7 be two “base”
points on the two lines respectively. Then (homogeneous) coordinates of points on L' can
be expressed as

X'=X.4+uV, ueRr

and similarly for points on L2. Then the two lines can be viewed as intersecting at a point
at infinity with coordinates V. The “image” of this intersection is simply given by

' ~ IIV.

This can be shown by considering images of points on the lines and letting 1 — o©c
asymptotically. If the images of these two lines are given, the image of this intersection can
be easily computed or measured. Figure 3.16 shows the intersection of images of parallel
lines, the so-called “vanishing point”, a concept well known to Renaissance artists. ]

Figure 3.16. “The School of Athens” by Raphael (1518), a fine example of architectural
perspective with a central vanishing point, marking the end of the classical Renaissance
(courtesy of C. Taylor).

Example 3.8 (Image “outside” the image plane). Consider the standard perspective
projection of a pair of parallel lines as in the previous example. We further assume that
they are also parallel to the image plane, i.e. the zy-plane. In this case, we have

=1 =[I,0] and V =[Vi,V5,0,0]".
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Hence, the “image” of the intersection is in the homogeneous coordinates
T
:13’ = [Vl,VQ,O] .

This does not correspond to any physical point on the 2-D image plane (whose points
supposedly have homogeneous coordinates of the form [z, i, 1]7). It is in fact a vanishing
point at infinity (of the image plane). Nevertheless, we can still treat it as a valid image
point. One way is to view it as the image of a point with zero depth (i.e. with the z-
coordinate zero). Or such a problem will automatically go away if we choose the imaging
surface to be an entire sphere rather than a flat plane. This is illustrated in Figure 3.17. m

image sphere image plane

Figure 3.17. Perspective images of two parallel lines which are also parallel to the 2-D
image plane. In this case they are parallel to the y-axis. The two image lines on the image
plane are also parallel hence do not intersect. On an image sphere however, the two image
circles ¢! and ¢ do intersect at the point . Clearly, z is the direction of the two image
lines.

Historical notes

Distortions to the pinhole model

As we mentioned earlier in this chapter, the analytical study of pinhole perspec-
tive imaging dated back to the Renaissance. Nevertheless, the pinhole perspective
model is a rather ideal approximation to actual CCD photo-sensors or film-based
cameras. Before the pinhole model can be applied to such cameras, a correc-
tion is typically needed to convert them to an exact perspective device, see
[Brank et al., 1993] and references therein.

For effective calibration techniques compensating the radial distortion in the
lens, the interested reader may refer to [Tsai, 1986a, Tsai, 1987, Tsai, 1989,
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Zhang, 1998b]. Some authors have shown that the lens distortion can be recovered
from multiple corresponding images: a simultaneous estimation of 3-D geome-
try and radial distortion can be found in the work of [Zhang, 1996, Stein, 1997,
Fitzgibbon, 2001].

In general, the pinhole perspective model is not adequate for modeling com-
plex optical systems that involve a zoom lens or multiple lenses. For a systematic
introduction to photographic optics and lens sysiems, we recommend the clas-
sic books [Stroebel, 1999, Born and Wolf, 1999]. For a more detailed account of
models for a zoom lens, the reader may refer to [Horn, 1986, Lavest et al., 1993]
and references therein. Other approaches such as using a two-plane model
[Wei and Ma, 1991] were also proposed to overcome the limitations of the pinhole
model.

Other simple camera models

In the computer vision literature, besides the pinhole perspective model, there ex-

ist many other types of simple camera models which are often used for modeling

various imaging systems under different practical conditions. This book will not

cover these cases. The inierested reader may refer to [Tomasi and Kanade, 1992]

for the study of geometry related to the orthographic projection, to [Ohta et al., 1981,
Aloimonos, 1990, Poelman and Kanade, 1997, Basri, 1996] for the para-perspective
projection case, to [Konderink and van Doorn, 1991, Mundy and Zisserman, 1992,

Quan and Kanade, 1996] for the affine projection case, and to [Geyer and Daniilidis, 2001]
and references therein for catadioptric models for omni-directional cameras.




