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Part I: Theory

1. Groups and inclusions:
Groups

(a) SO(n): special orthogonal group

(b) O(n): orthogonal group

(¢c) GL(n): general linear group

(d) SL(n): special linear group

(e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions in R?)
(f) E(n): euclidean group

(2) A(n): affine group

Inclusions

(a) SO(n) C O(n) C GL(n)
(b) SE(n) C E(n) C A(n) C GL(n+1)
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3. Let V be the orthonormal matrix (i.e. V' = V1) given by the eigenvectors, and ¥ the diagonal
matrix containing the eigenvalues:
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As V is a basis, we can express x as a linear combination of the eigenvectors z = Va, for some
o € R™ For ||z|| = 1wehave 3, a? =a'a=2"VV 'z = 2"z = 1. This gives
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Considering ) _, a? = 1, we can conclude that this expression is minimized iff only the «; corre-
sponding to the smallest eigenvalue(s) are non-zero. If A,_; > A, there exist only two solutions
(o, = £1), otherwise infinitely many.

For maximisation, only the the «; corresponding to the largest eigenvalue(s) can be non-zero.



4. We show that: 1z € kernel(A) < = € kernel(A T A).

”=": Let x € kernel(A)
AT Az =AT0=0 =z ckemel(ATA)
=0
"< Letz € kernel(AT A)
0=x" AT Az = (Az, Az) = ||Az||> = Az =0 = z € kernel(A)
=0

5. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the convention
used, we might have S € R"™*", S € R"*" or S € RP*P where p = rank(A). In the lecture the third
option was presented, for which S is invertible (no zeros on the diagonal). In the following, we present
the results for the first option, since that is the one that Matlab’s svd function returns by default.

(a) A e R™"withm >n,U € R™*™, § € R™M*" YV € R
(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices A € R"*"™ with m # n, whereas the EVD is only
applicable to quadratic matrices (A € R™*" with m = n).
(c) Relationship between U, S,V and the eigenvalues and eigenvectors of AT Aand AA:
i. AT A: The columns of V are eigenvectors; the squares of the diagonal elements of S are
eigenvalues.
ii. AA": The columns of U are eigenvectors; the squares of the diagonal elements of S are
eigenvalues (possibly filled up with zeros).
(d) Entriesin S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.



