
Multiple View Geometry: Solution Exercise Sheet 2
Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger, TU Munich
https://vision.in.tum.de/teaching/ss2018/mvg2018

Part I: Theory

1. Groups and inclusions:
Groups

(a) SO(n): special orthogonal group
(b) O(n): orthogonal group
(c) GL(n): general linear group
(d) SL(n): special linear group
(e) SE(n): special euclidean group (In particular, SE(3) represents the rigid-body motions in R3)
(f) E(n): euclidean group
(g) A(n): affine group

Inclusions

(a) SO(n) ⊂ O(n) ⊂ GL(n)

(b) SE(n) ⊂ E(n) ⊂ A(n) ⊂ GL(n+ 1)

2. λa = (λava)>vb
〈va,vb〉 = v>a A

>vb
〈va,vb〉 = v>a Avb

〈va,vb〉 = v>a (λbvb)
〈va,vb〉 = λb

3. Let V be the orthonormal matrix (i.e. V > = V −1) given by the eigenvectors, and Σ the diagonal
matrix containing the eigenvalues:

V =

 | |
v1 · · · vn
| |

 and Σ =


λ1 0

. . .

0
. . . 0

. . . 0 λn

 .

As V is a basis, we can express x as a linear combination of the eigenvectors x = V α, for some
α ∈ Rn. For ||x|| = 1 we have

∑
i α

2
i = α>α = x>V V >x = x>x = 1. This gives

x>Ax = x>V ΣV −1x

= α>V >V ΣV >V α

= α>Σα =
∑
i

α2
iλi

Considering
∑

i α
2
i = 1, we can conclude that this expression is minimized iff only the αi corre-

sponding to the smallest eigenvalue(s) are non-zero. If λn−1 
 λn, there exist only two solutions
(αn = ±1), otherwise infinitely many.

For maximisation, only the the αi corresponding to the largest eigenvalue(s) can be non-zero.
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4. We show that: x ∈ kernel(A)⇔ x ∈ kernel(A>A).

”⇒”: Let x ∈ kernel(A)
A> Ax︸︷︷︸

=0

= A>0 = 0 ⇒ x ∈ kernel(A>A)

”⇐”: Let x ∈ kernel(A>A)
0 = x>A>Ax︸ ︷︷ ︸

=0

= 〈Ax,Ax〉 = ||Ax||2 ⇒ Ax = 0 ⇒ x ∈ kernel(A)

5. Singular Value Decomposition (SVD)
Note: There exist multiple slightly different definitions of the SVD. Depending on the convention
used, we might have S ∈ Rm×n, S ∈ Rn×n, or S ∈ Rp×p where p = rank(A). In the lecture the third
option was presented, for which S is invertible (no zeros on the diagonal). In the following, we present
the results for the first option, since that is the one that Matlab’s svd function returns by default.

(a) A ∈ Rm×n with m ≥ n, U ∈ Rm×m, S ∈ Rm×n, V ∈ Rn×n

(b) Similarities and differences between SVD and EVD:

i. Both are matrix diagonalization techniques.
ii. The SVD can be applied to matrices A ∈ Rm×n with m 6= n, whereas the EVD is only

applicable to quadratic matrices (A ∈ Rm×n with m = n).

(c) Relationship between U, S, V and the eigenvalues and eigenvectors of A>A and AA>:

i. A>A: The columns of V are eigenvectors; the squares of the diagonal elements of S are
eigenvalues.

ii. AA>: The columns of U are eigenvectors; the squares of the diagonal elements of S are
eigenvalues (possibly filled up with zeros).

(d) Entries in S:

i. S is a diagonal matrix. The elements along the diagonal are the singular values of A.
ii. The number of non-zero singular values gives us the rank of the matrix A.
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