

Multiple View Geometry: Solution Sheet 4

Prof. Dr. Daniel Cremers, Nikolaus Demmel, Marvin Eisenberger Computer Vision Group, TU Munich

http://vision.in.tum.de/teaching/ss2018/mvg2018

Exercise: May 16th, 2018

Part I: Theory

1. Image Formation

(a) Compute λ and show that (2) is equivalent to

$$u = \frac{fX}{Z} + o_x \,, \quad v = \frac{fY}{Z} + o_y \,.$$

Performing the matrix multiplication in (2), one obtains

$$\begin{pmatrix} \lambda u \\ \lambda v \\ \lambda \end{pmatrix} = \begin{pmatrix} fX + o_x Z \\ fY + o_y Z \\ Z \end{pmatrix}$$

From the third row, it directly follows that $\lambda = Z$. Substituting Z for λ and dividing the equation by Z, one immediately obtains the result.

(b) A classic ambiguity of the perspective projection is that one cannot tell an object from another object that is exactly *twice as big but twice as far*. Explain why this is true.

Let $\tilde{\mathbf{X}}_1 = (X_1 \ Y_1 \ Z_1)^{\top}$ be a point on the smaller object and $\tilde{\mathbf{X}}_2 = (X_2 \ Y_2 \ Z_2)^{\top}$ a point on the larger object. Since $\tilde{\mathbf{X}}_2$ is twice as far away, we have $Z_2 = 2Z_1$, and since it is twice as big we have $X_2 = 2X_1$ and $Y_2 = 2Y_1$. Thus,

$$u_2 = \frac{fX_2}{Z_2} + o_x = \frac{2fX_1}{2Z_1} + o_x = \frac{fX_1}{Z_1} + o_x = u_1$$

and analogous for $v_2 = v_1$.

(c) For a camera with f = 540, $o_x = 320$ and $o_y = 240$, compute the pixel coordinates u and v of a point $\tilde{\mathbf{X}} = (60\ 100\ 180)^{\top}$.

$$u = \frac{fX}{Z} + o_x = \frac{540 \cdot 60}{180} + 320 = 500$$

$$v = \frac{fY}{Z} + o_y = \frac{540 \cdot 100}{180} + 240 = 540$$

Explain with the help of (b) why the units of $\tilde{\mathbf{X}}$ are not needed for this task.

Using different units (mm, cm, m, etc.) can be interpreted as scaling the point coordinates by a constant factor (10, 100, ...). The argument of (b) for a factor of 2 can easily be generalized to any factor α .

Will the projected point be in the image if it has dimensions 640×480 ?

No, the point (u, v) = (500, 540) is not in $[-0.5, 639.5] \times [-0.5, 479.5]$.

(d) Using the generic projection π , show that (3) — and therefore also (1) and (2) — is equivalent to

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K \begin{pmatrix} \pi(\tilde{\mathbf{X}}) \\ 1 \end{pmatrix} .$$

Insert in the RHS of the equation:

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K \begin{pmatrix} \pi(\tilde{\mathbf{X}}) \\ 1 \end{pmatrix} = \begin{pmatrix} f & 0 & o_x \\ 0 & f & o_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} X/Z \\ Y/Z \\ 1 \end{pmatrix} = \begin{pmatrix} fX/Z + o_x \\ fY/Z + o_y \\ 1 \end{pmatrix}$$

2. Radial Distortion

(a) Can this model be used for lenses with a field of view of more than 180° ?

No, it can only model points for which the viewing ray intersects the image plane. Since points are first projected on the canonical iamge plane with $\pi(\tilde{\mathbf{X}})$ there is a singularity at Z=0 (which is 180°).

Note: It is possible to rewrite the FOV model to avoid the division by Z and apply it to lenses with more than 180° FOV.

(b) Derive a closed form solution for f in the undistortion formula

$$\pi(\tilde{\mathbf{X}}) = f\left(\|\pi_d(\tilde{\mathbf{X}})\|\right) \cdot \pi_d(\tilde{\mathbf{X}})$$

using (4) and $g(r) = g_{ATAN}(r)$.

Define $r:=\|\pi(\tilde{\mathbf{X}})\|$ and $r_d:=\|\pi_d(\tilde{\mathbf{X}})\|$. The norms of (4) and (6) are:

$$r = f(r_d)r_d$$
 and $r_d = g(r)r$

Inserting $g = g_{ATAN}$ yields

$$r_{d} = \frac{1}{\omega r} \arctan\left(2r \tan\left(\frac{\omega}{2}\right)\right) r = \frac{1}{\omega} \arctan\left(2r \tan\left(\frac{\omega}{2}\right)\right)$$

$$\Rightarrow \tan(r_{d}\omega) = 2r \tan\left(\frac{\omega}{2}\right)$$

$$\Rightarrow r = \frac{\tan(r_{d}\omega)}{2\tan\left(\frac{\omega}{2}\right)} = f(r_{d})r_{d} \quad \Rightarrow f(r_{d}) = \frac{\tan(r_{d}\omega)}{2r_{d}\tan\left(\frac{\omega}{2}\right)}$$

3. Image Rectification

Let I_d be a distorted image taken by a camera with intrinsic parameter matrix K_d .

Write down expressions for the pixel coordinates u_d , v_d of a point $\tilde{\mathbf{X}} \in \mathbb{R}^3$ in the distorted image and for the pixel coordinates u, v of the same point projected by a perfect pinhole camera with intrinsic camera matrix K.

$$\begin{pmatrix} u_d \\ v_d \\ 1 \end{pmatrix} = K_d \begin{pmatrix} \pi_d(\tilde{\mathbf{X}}) \\ 1 \end{pmatrix} = K_d \begin{pmatrix} g \left(\| \pi(\tilde{\mathbf{X}}) \| \right) \pi(\tilde{\mathbf{X}}) \\ 1 \end{pmatrix}, \quad \begin{pmatrix} u \\ v \\ 1 \end{pmatrix} = K \begin{pmatrix} \pi(\tilde{\mathbf{X}}) \\ 1 \end{pmatrix}$$