# SLAM++: Simultaneous Localisation and Mapping at the Level of Objects

Renato F. Salas-Moreno, Richard A. Newcombe, Hauke Strasdat,

Paul H. J. Kelly, Andrew J. Davison

Tim Stricker

Technical University of Munich

**Department of Informatics** 

Chair for Computer Vision and Artificial Intelligence

Munich, 30.05.2018



# ПΠ

#### Contents

- 1. Problem Motivation
- 2. Approach
  - a. High-Level Architecture
  - b. Functionality in Detail
- 3. Results and Applications
- 4. Discussion of Scientific Contributions



#### **Problem Motivation**

# ТШ

### **Problem Description**

- SLAM: Simulteaneous Localisation And Mapping
- Multiple general approaches
- Challenges
  - Real-time operation
  - Scalability and loop closure
  - Dynamic objects
  - Relocalisation ("Kidnapped robot problem")

#### Main Ideas

- Prior domain knowledge
  - $\rightarrow$  Many environments consist of repeated objects / structures
- Usage of previously detected objects
  → Camera Tracking and active search
- Representing the world as a pose-graph



# Approach

#### **High-Level Architecture**



- 1. Live Camera Pose Tracking (ICP)
- 2. Object detection
- 3. Adding succesfully detected objects to graph
- 4. Rendering objects

# ТШ

## Main Functionalities

- Creating a database of 3D object models
  - KinectFusion for mapping
  - *Marching Cubes* for extracting the mesh
- Real-time object recognition
- Camera tracking and object pose estimation
- Graph optimisation
- Relocalisation

# **Real-Time Object Recognition**

- General approach derived from Drost et al.
- Main Idea: Accumulation of votes
  - Generalised Hough Transform
  - Point-Pair Features (PFFs)



https://commons.wikimedia.org/wiki/File:Hough-example-resulten.png#/media/File:Hough-example-result-en.png



https://www.researchgate.net/figure/Two-surface-points-m-i-and-their-normals-n-i-determine-a-point-pair-feature\_fig3\_307934827

Tim Stricker | SLAM++ | Recent Advances in 3D Computer Vision

# **Real-Time Object Recognition**

- Usage of GPU
  - Generation of global object descriptions
  - Matching, Voting, Vote Accumulation
- Active Object Search:
  - Mask Generation
  - Major advantage of SLAM++



#### Active Object Search



Tim Stricker | SLAM++ | Recent Advances in 3D Computer Vision

### Camera Tracking and Object Pose Estimation

- Camera tracking: KinectFusion
  - ICP on basis of mapped model
  - Model incomplete at early stages
- Camera tracking: SLAM++
  - High quality multi-object prediction
  - Minimizing the point-to-plane metric (depth image)

$$E_c(\xi) = \sum_{u \in \Omega} \psi(e(u,\xi))$$

 $\xi \in \mathbb{R}^6$ : Twist in SE(3)  $u \in \Omega$ : Valid pixels  $\psi$ : Huber penalty function

# Camera Tracking and Object Pose Estimation

Huber penalty function

 $\rightarrow$  Softer outlier weighting



Tim Stricker | SLAM++ | Recent Advances in 3D Computer Vision

## Camera Tracking and Object Pose Estimation

- Tracking convergence
  - Maximum: 10 iterations
  - Check for poor convergence
- Additional usage of ICP:
  - Model initialisation
  - Camera-object pose constraints

# **SLAM Map Representation**

- Representation of the world as a graph
  - Nodes:
    - Estimated poses of objects:  $T_{wo_i}$
    - Historical poses of the camera:  $T_{wi}$
  - Edges (Constraints):
    - Measurements of an object pose:  $Z_{i,o_i}$
  - $T_{wo_j}, T_{wi}, Z_{i,o_j} \in SE(3)$
- Additional constraints (optionally)
  - Camera-Camera motion:  $Z_{i,i+1}$
  - Common ground plane:  $P_{o_i,f}$

### ТЛП

# SLAM Map Representation

Example Graph:



# Graph Optimisation

- Variables and constants:
  - Object and camera poses
  - Object measurements and camera-camera motions
- Minimization: Sum of all measurement constraints:

$$E_{m} = \sum_{Z_{i,o_{j}}} \left\| \log \left( Z_{i,o_{j}}^{-1} \cdot T_{wi}^{-1} \cdot T_{wo_{j}} \right) \right\|_{\Sigma_{i,o_{j}}} + \sum_{Z_{i,i+1}} \left\| \log \left( Z_{i,i+1}^{-1} \cdot T_{wi}^{-1} \cdot T_{wi+1} \right) \right\|_{\Sigma_{i,i+1}}$$

 $||x||_{\Sigma} \coloneqq x^T \Sigma^{-1} x$  Mahalanobis distance  $\log(\cdot)$  Logarithmic map of SE(3)

- Generalised least squares problem
- Incorporation of other constraints additively

# Relocalisation

- Lost camera tracking: Relocalisation
- Matching of local graph against longterm graph
- Matching procedure adapted from object recognition







#### **Results and Applications**

#### **Statistics**

- Room sizes mapped: 15 x 10 x 3 meters
- Runtime of real-time process: 10 minutes
- System settings for mapping in a room of size 10 x 6 x 3 meters
  - Framerate: 20 fps
  - Object count: 35 objects in 5 classes Edge count: 338
  - Memory: 350 kB (Graph), 20 MB (Database)
    Comparison with KinectFusion: 1.4 GB



#### Applications

#### Large scale mapping

#### Detection of moved objects







#### Applications

#### Loop closure





#### **Discussion of Scientific Contributions**

#### Positives

- Conceptually new approach to the SLAM problem
- Advantages over dense SLAM:
  - Better scalability
  - Easier loop closure capability
- Advantages over feature-based SLAM:
  - Less features needed
  - More efficient and robust

## Criticism

- Missing evaluation of accuracy
- Very structured environments needed
  → Repeated objects
- Environment cannot be completely unknown
  - $\rightarrow$  Pre-defined database of objects