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Depth and camera motion estimation in videos

Previous approaches:

require extensive
engineering

A
or

require expensive training sets
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TUT

Proposed solution in
‘Unsupervised Learning of Depth and Ego-Motion from Video'
(Zhou et al., 2017)

Target view Explanability mask

Problem: moving objects
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Proposed solution in this paper

e Learning depth and segmentation in two separate sub-networks

e Model both camera and object motion

— allows to train on unrestricted videos
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Two sub-networks for motion and for structure
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Approach in SfM-Net

Predict frame Generate 3D
depth point cloud

Predict camera rotation
and translation

Predict motion masks

SfM-Net  Oliver Lengwinat

Transform Project to ' Map two
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Approach in SfM-Net

Predict frame }_‘ Generate 3D

depth point cloud
Predict camera rotation Transform R Map two
and translation point cloud optical flow on frames
2D plane together

Predict motion masks

— Using unsupervised learning from single image
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Approach in SfM-Net

depth

Predict frame ]_» Generate 3D

point cloud

Predict camera rotation
and translation

Transform
point cloud

Predict motion masks

== | Point
Cloud
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Approach in SfM-Net

Predict frame Generate 3D
depth point cloud

Predict camera rotation
and translation

Predict motion masks

Transform
point cloud

Project to Map two
optical flow on frames
2D plane together
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Approach in SfM-Net

Predict frame Generate 3D
depth point cloud

Predict camera rotation
and translation

Predict motion masks

SfM-Net Oliver Lengwinat

Transform
point cloud
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Approach in SfM-Net

Predict frame ]_» Generate 3D

depth point cloud
: : Projectto | | Maptwo |
PrEd; ;tdc?rr:rfsrlg ;ic;[:hon pTg?anI?;ﬁ optical flow on 1 frames
2D plane together

Predict motion masks

« First, apply object transformations:
X} = X+ Yy mf (0) (RE(Xe — pi) + tf = X1)

 Then, apply camera transformation:
¢ = R{(X; —pi) +1f
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Approach in SfM-Net

Predict frame ]_» Generate 3D

depth point cloud
Predict camera rotation Transform Dp;gleﬁt o:'.? - h??aﬁgo
and translation point cloud 2D plane together

Predict motion masks

« Projecting each Point X! = (X/.Y/".Z!) back to the image plane:
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* The flow U,V between the two frames at pixel / is
(Ue(2), Vi(2)) = (i — 24, Yis1 — Yi)
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Approach in SfM-Net

Predict frame |

depth
o’ e | Tendom | R, L]
translation point clou point clod 2D plane together

Predict motion
masks

Forward-backward

P
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Computing Loss in SfM-Net

e Photometric error:
1
L = Z [1e(x,y) — Lipa (2", 9")|n
Ty

w h &

e Forward-backward consistency constraints:
L8 = 5 [(di(z,y) + Wiz, y) —

T,y
dip1(z + Uiz, y), y + Vi(z,y))|

e Spatial smoothness as in ‘Unsupervised Learning of Depth and Ego-Motion
from Video’

e Supervising depth (optional):
£ = LS Gmask€T (2, y)- [y (2, 9)=dC7 (2, y)

w h
T,y
« Supervising camera motion (optional):
Ly = ||te"]|2
L™ = arccos (IIIiIl (l, max (—l._ tmm{zf )= ) ))
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Results

e Depth prediction
e Segmentation

e Camera pose
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Prediction:
Depth

. Approach Log RMSE
On KITTI 2012 and 2015: KITTI 2008 | KITTL2015
with stereo pairs 0.31 0.34
seq. with motion masks 0.45 0.41
seq. without motion masks 0.77 1.25
RGB frame Predicted Depth

(stereo pairs)
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. Approach Log RMSE
On KITTI 2012 and 2015:  LmRWSE
with stereo pairs 0.31 0.34
seq. with motion masks 0.45 0.41
seq. without motion masks 0.77 1.25
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SfM-Net

Prediction:
Depth
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Prediction:
Segmentation

On MoSeg:
— Includes many non-rigid motions

RGB frame Predicted low  Motion masks

Intersection over Union
(loU):

ours:
0.29
benchmark (4 masks) :
0.30
best:
0.57
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Prediction:
Relative camera pose

On RGB-D SLAM Freiburg | dataset

Seq. | transl [27] | rot [27] | transl. ours | rot ours
360 0.099 0.474 0.009 1.123
plant 0.016 1.053 0.011 0.796
teddy 0.020 1.14 0.0123 0.877
desk 0.008 0.495 0.012 0.848
desk?2 0.099 0.61 0.012 0.974
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SfM-Net

Discussion

Oliver Lengwinat

Seminar: Recent Advances in 3D Computer Vision

20



Scientific contributions

e Framework to learn depth and camera motion

e Less limitations on videos for training than previous approaches

e More than just depth and camera motion

e Can be used with several degrees of supervision

e Can improve further if more training is done
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Scientific contributions

To do this

o the geometry of image formation is learned

« pixel-wise depth is predicted from one image

e camera motion, segmentation and object motions are predicted from a pair
of images

o forward-backward constraints are applied to learn a consistent 3D structure
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Discussion

e Mostly combination of these papers:

- Unsupervised Learning of Depth and Ego-Motion from Video

- Motion Cooperation: Smooth Piece-Wise Rigid Scene Flow from RGB-D
Images

- Unsupervised monocular depth estimation with left-right consistency

e Limited to only 3 objects

e Only works when camera is moved

« Neglecting small objects (see next slide)
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Discussion

Object masks tend to miss very small, distant moving objects.

Predicted Motion Masks Gruqnd Truth Mask Predicted Flow Ground Truth Flow

,.'q.-

A1

Segmentation and flow compared with ground truth of KITTI2015
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Outlook

e Possible further research:

07/18/2018

Extend forward-backward constraints
Inference problem
Methods for pre-training

Find a good solution for number of motion masks
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SfM-Net

Thank you!

Oliver Lengwinat
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SfM-Net

Oliver Lengwinat

Backup
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Depth from Mono

(&) Inage (5] Ground-Truth [e) Gaussian (e} Laplacian

3-D Depth Reconstruction from a
Single Still Image, Saxena et al., 2007
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Approach in SfM-Net

Predict frame Generate 3D
depth point cloud

Predict camera rotation
and translation

Predict motion masks

cosax —sina 0
R{*(a) = | sinaa cosa 0],

0 0 1

cos 3 0 sing
REY(B) = 0 1 I

—sing 0 cosp

1 0 0
Ri*(y)= |0 cosy —sinvy|,

0 sin-y COS

SfM-Net  Oliver Lengwinat

Transform Project to ' Map two |
oint cloud optical flow on frames
0 2D plane together
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Calculating camera motion

Let {R{,t{} € SE3 denote the 3D rotation and
translation of the camera from frame [; to frame [; 4,
(relative camera pose across consecutive frames). We

represent Fj using an Euler angle representation as
R () R{¥(B) Ry * () where

cosa —sina 0
R{*(a) = | sina cosa 0],
0 0 1

cos 0 sinpf
R{Y(B) = 0 1 0 .

—singd 0 cosp

1 0 0
R{=(v) = (ﬂ COS Y —sin’}-) .

0 sinqy Cos -~y

and «v, 3, are the angles of rotation about the x, y, z-axes
respectively. The fully-connected layers are used to predict
translation parameters t“, the pivot points of the camera ro-
tation p. € R? as in [5], and sin o, sin 3, sin v. These last
three parameters are constrained

to be in the interval [—1, 1] by using RELU activation
and the minimum function.
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Calculating spatial smoothness

Egu(Di) = st(x)p(VaDi(x)) + s (x)p(V, Di(x))

The weighting functions sxt and syt control the smoothness of the
estimated depth map. It allows higher smoothing influence where contours
do not arise in the image, so that the discontinuities are kept where the
contours arise.

(from ‘Intrinsic Depth: Improving Depth Transfer with Intrinsic Images’ by Naejin Kong and Michael J.
Black)
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Approach in SfM-Net

Workflow:

Predict frame ) Generate 3D
depth point cloud

Predict camera rotation
and translation

Predict motion masks
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Transform
point cloud

Project to
optical flow on
2D plane

>

Map two
frames
together
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Workflow:

Predict frame
depth

Predict camera
rotation and
translation

Approach in SfM-Net

Generate 3D
point cloud

Transform
point cloud

Predict motion
masks

07/18/2018

SfM-Net  Oliver Lengwinat

Project to Map two
optical flowon »  frames
2D plane together
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