

Recent Advances in 3D Computer Vision pre-meeting

Christiane Sommer Lingni Ma

Computer Vision and Artificial Intelligence Group

seminar3dcv@vision.in.tum.de

Outline

General Information
About the Seminar
Organization

Possible Papers
RGB-D SLAM
Stereo and Monocular SLAM
Dense Reconstruction
Dynamic Mapping
3D Deep Learning

About the Seminar What will you learn in the seminar?

- Get an overview on fundamental techniques to solve problems in tracking and mapping
- Be able to read and understand scientific publications
- Prepare and give a talk
- Write a scientific report

About the Seminar

How do you need to prepare for the seminar?

- Please do not work on your topic completely alone
 - → meet at least twice with your supervisor
- Schedule:
 - 1 month before the talk: meet supervisor to discuss paper
 - 1 week before the talk: meet supervisor to discuss your slides
 - [optional] shortly after the talk: get feedback of your supervisor
 - 2 weeks after the talk: submit report

About the Seminar

How will your presentation be?

- ▶ 30 minutes talk, 10 minutes for questions
 - → make sure to finish on time!
- ▶ 1-2 minutes per slide → 15-30 slides, do not put too much information!
- Recommended structure:
 - Introduction, problem motivation, outline
 - Approach
 - Experimental results
 - Discussion
 - Summary of scientific contributions

About the Seminar What about the final report?

Use LaTeX template and send final pdf via email to supervisor

► Length: 6-10 pages

Language: English

About the Seminar What do we expect from you?

- Regular attendance is required!
- Active participation in the discussions
- Quality of the talk
- Quality of the report

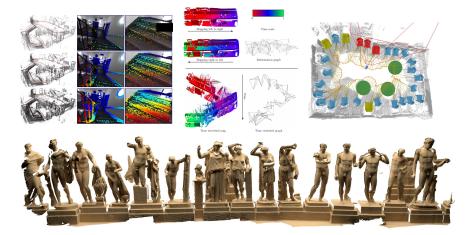
Organization

How is the seminar organized?

- Weekly meetings are on Wednesdays from 2pm to 4pm
- Two presentations per week
- ▶ 14 participants → 7 weeks of presentations
- There might be an introductory meeting before the presentations start
- Starting date will be announced on web page once papers are assigned, probably end of May

Organization

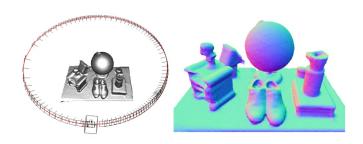
Where do you find the list of papers?


- ► Go to the seminar web page: https://vision.in.tum.de/teaching/ss2018/seminar_3dcv
- ► Follow the link to the material section (will be added after pre-meeting)
- ► Login with the password seminar_3dcv_ss18

Organization How do we assign papers?

- Register on TUMonline for the seminar and
- Send us an email with your 3 preferred papers
- We will match the TUMonline list with the emails we get and select candidates.
- You will get an email with our decision both in case of acceptance and in case of rejection.

Paper of Interests



RGB-D SLAM

RGB-D SLAM static, rigid

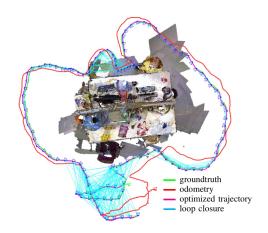
KinectFusion: Real-Time Dense Surface Mapping and Tracking

R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux D. Kim, A. Davison, P. Kohli, J. Shotton S. Hodges and A. Fitzgibbon

RGB-D SLAM static, rigid

BundleFusion: Real-time Globally Consistent 3D Reconstruction using On-the-fly Surface Re-integration

A. Dai, M. Nießner, M. Zollhöfer, S. Izadi and C. Theobalt



RGB-D SLAM static, rigid

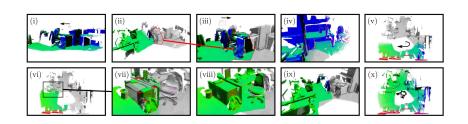
Dense Visual SLAM for RGB-D Cameras

C. Kerl, J. Sturm and D. Cremers

RGB-D SLAM static, rigid

Real-Time Camera Tracking and 3D Reconstruction Using Signed Distance Functions

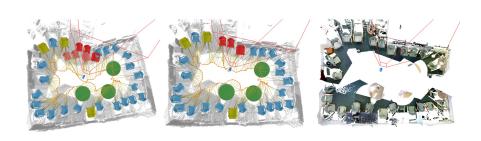
E. Bylow, J. Sturm, C. Kerl, F. Kahl and D. Cremers



RGB-D SLAM static, rigid

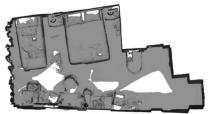
ElasticFusion: Real-Time Dense SLAM and Light Source Estimation

T. Whelan, R. F. Salas-Moreno, B. Glocker A. Davison and S. Leutenegger



RGB-D SLAM


static, rigid, semantic


SLAM++: Simultaneous Localisation and Mapping at the Level of Objects

R. F. Salas-Moreno, R. Newcombe, H. Strasdat, P. Kelly and A. Davison

RGB-D SLAM video demo

Dense Reconstruction

Dense Reconstruction dense, RGB-D, efficient storage

Real-time 3D Reconstruction at Scale using Voxel Hashing

M. Nießner, M. Zollhöfer, S. Izadi and M. Stamminger

Dense Reconstruction color refinement

Color Map Optimization for 3D Reconstruction with **Consumer Depth Cameras**

Q.-Y. Zhou and V. Koltun

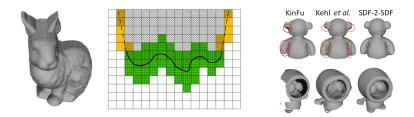
Input

Optimized reconstruction

Dense Reconstruction dense, RGB-D

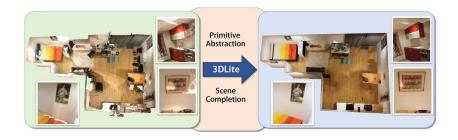
Robust Reconstruction of Indoor Scenes

S. Choi, Q.-Y. Zhou and V. Koltun



Dense Reconstruction dense, depth only

SDF-2-SDF: Highly Accurate 3D Object Reconstruction


M. Slavcheva, W. Kehl, N. Navab and S. Ilic

Dense Reconstruction abstraction, efficient storage

3DLite: Towards Commodity 3D Scanning for Content Creation

J. Huang, A. Dai, L. Guibas and M. Nießner

Dynamic Mapping

Dynamic Mapping non-rigid

VolumeDeform: Real-time Volumetric Non-rigid Reconstruction

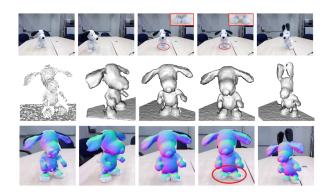
M. Innmann, M. Zollhöfer, M. Nießner C. Theobalt and M. Stamminger

Dynamic Mapping non-rigid

DynamicFusion: Reconstruction and Tracking of Non-rigid Scenes in Real-Time

R. Newcombe, D. Fox and S. Seitz

(e) Canonical model warped into its live frame



(f) Model Normals

Dynamic Mapping non-rigid

KillingFusion: Non-rigid 3D Reconstruction without Correspondences

M. Slavcheva, M. Baust, D. Cremers and S. Ilic

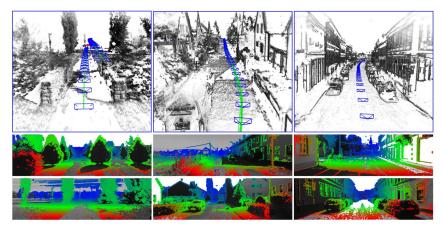
Dynamic Mapping non-rigid

Fusion4D: Real-time Performance Capture of Challenging Scenes

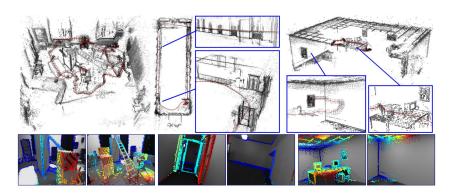
M. Dou, S. Khamis, Y. Degtyarev, P. Davidson S. Fanello, A. Kowdle, S. Escolano, C. Rhemann D. Kim, J. Taylor, P. Kohli, V. Tankovich and S. Izadi

Stereo and Monocular SLAM

ORB-SLAM: a Versatile and Accurate Monocular SLAM System


R. Mur-Artal, J. Montiel, and J. Tardós

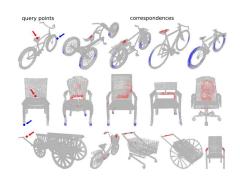
Large-Scale Direct SLAM with Stereo Cameras


J. Engel, J. Stueckler and D. Cremers

Stereo and Monocular SLAM monocular, direct, sparse

Direct Sparse Odometry

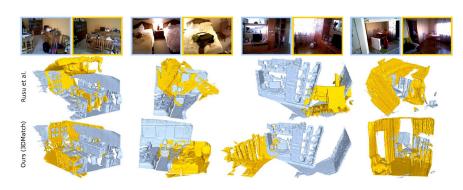
J. Engel, V. Koltun and D. Cremers


Deep Learning

Deep Learning

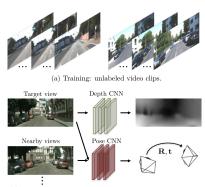
3D feature, correspondences

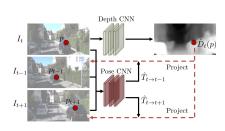
3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions


A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao and T. Funkhouser

Deep Learning

3D feature, correspondences


- keypoint matching
- correspondences over 3D meshes
- geometric registration



Deep Learning depth and motion

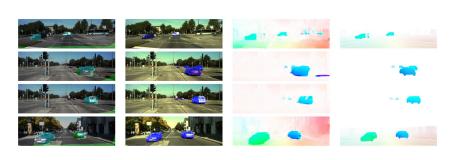
Unsupervised Learning of Depth and Ego-Motion from Video

T. Zhou, M. Brown, N. Snavely and D. G. Lowe

(b) Testing: single-view depth and multi-view pose estimation.

Deep Learning depth and motion

- ► CNN
- unsupervised learning
- adapt canonical algorithms with deep learning



Deep Learning CNN for SfM

SfM-Net: Learning of Structure and Motion from Video

S. Vijayanarasimhan, S. Ricco and C. Schmid, R. Sukthankar and K. Fragkiadaki

Questions?

Christiane Sommer Lingni Ma

Computer Vision and Artificial Intelligence Group

seminar3dcv@vision.in.tum.de