Visual Navigation for Flying Robots Computer Vision Group
D. Cremers, X. Gao, V. Usenko Department of Informatics
Summer Semester 2018 Technical University of Munich

Exercise Sheet 2
Topic: Lie group and Lie algebra
Submission deadline: Monday, 04.28.2015, 23:59 pm
Hand-in via email to visnav_ss2018Qvision.in.tum.de

General Notice

The exercises should be done by yourself, but the final project should be done in
teams of two to three students. We will use Ubuntu 14.04 in this lab course. It is
already installed on the lab computers. If you want to use your own laptop, you
will need to install Ubuntu by yourself.

Files related with the exercise will be placed in directories like "paper/’ or ’doc/’.
Please read these materials before start answering the questions.

Exercise 1: Left Jacobian in SF(3)

We have shown the exponential map in SO(3) in the lecture, now please derive the
exponential map in SE(3). Assume & = [p, @|T € se(3), where p is the translation
part and ¢ is the rotation part. We know its exponential map is

co () = |5 @) g

ot 1

Let ¢ = fa, then we have

> 1 n sinf sin 6 1—cosf , A
Z(Hl)‘(w = 1+(1— ;)aaT—i—Ta’\:J. (2)
n=0 ’

Please prove this equation, and verify it using the Sophus library.

Hints: (i) use Taylor expansion and put the odd and even items together, just like
what we do in SO(3)’s case. (ii) When verifying the result, you can choose an
arbitrary vector as a se(3) element, use the exp() function in Sophus/se3.hpp, and
then show the exponential map result is same as the formula we’ve shown.

Exercise 2: Compare trajectories

When we want to evaluate SLAM systems, it is always useful to compare the esti-
mated trajectory to the ground-truth. In this section, I will give to two files which
contain an estimated and a ground-truth trajectory. Please complete the following
tasks:

1. Read and plot the trajectories. The trajectory files are stored in code/ground-
truth.txt and code/estimate.txt. Each line in the file is a pose with the format

[ta t:m tya tza 4z, Qy7 qz, qw]7

where t is the time stamp, ¢,,%,,t, is the translation part, and g¢., gy, ¢., Gw
is the rotation part (g, is the real part of the quaternion). Here the gq,t
represent the transform from the camera to the world, i.e. the T,.. Please
write a program (see code/draw__trajectory.cpp) that reads the trajectory files
and plot them in a Pangolin window.

2. We can further compute the estimated error of the trajectory. Indicators
that are commonly used here are ATE (Average Translational Error), RPE
(Relative Pose error) or RMSE (Root mean squared error). Let T, be the
ground-truth trajectory and 7. be the estimated one, where & = 1,...,n,
then the ATE can be written as:

1 n
ATE = = E ||trans(Ty) — trans (Te,k)||§- (3)
n
k=1

where the trans() function takes the translation part of the transform matrix.
Of course, this error indicates only the translational part. We can also define
the RMSE of alignment error as:

1< _
RMSE = EZ'“Og(Tg,lee,k)vH%' (4)
k=1

Using these definitions, please compute the ATE and RMSE of alignment error
of the given two trajectories.
Exercise 3: Images, camera intrinsic and extrinsic

We have talked about the intrinsic, extrinsic and distortion model in camera cali-
bration. Please complete the following tasks using the knowledge you’ve learned in
the course.

1. Image undistortion. The code/test.png is a distorted image from EuRoC
dataset. The radial and tangential distortion model is:

Tdistorted = T (1 + k17?2 + kor) 4+ 2p1zy + po (r* + 222)
Ydistorted = Y (1 + k172 + kor®) + p1 (r? 4 2y?) + 2poxy

(5)
Now given the distortion parameters:
ky = —0.28340811, ky = 0.07395907, p; = 0.00019359, p, = 1.76187114e — 05

and camera intrinsics:

fz = 458.654, f, = 457.296, c, = 367.215, ¢, = 248.375.

2

Please write a program (using code/undistort__image.cpp) to recover the undis-
torted image.

Note: Please don’t use OpenCV’s undistortion functions, you need to do this
computation by yourself. However, you can use OpenCV function to check
if your code is right or not. And after undistortion, the straight lines in 3D
should look straight in the image.

2. Stereo vision. Stereo cameras can use the disparity to compute the depth of
pixels. Here we give you two images: code/left.png and code/right.png, and
also the disparity image: code/disparity.png. The intrinsics of stereo camera
are:

fz = T18.856, f, = 718.856, c, = 607.1928, ¢, = 185.2157

and the baseline is b = 0.573 m. The pixel values in the disparity image is
d = uy, — ug, so for any pixel in the left image (ur,vy), (ur — d,vy) should be
its corresponding point in the right image.

Please recover the point cloud in the left eye using the disparity image, and
then show it in a Pangolin window. You can use the code in code/disparity.cpp.

3. RGB-D vision. The code/RGBD1.png - code/RGBD5.png are five images
captured by an RGB-D camera, and code/depthl.pgm - code/depth5.pgm are
the corresponding depth images. The intrinsics of the RGB-D camera are
given in the code, and the extrinsics are stored in code/RGBD-extrinsic.txt
in the same format as exercise 2. Now you can build a point cloud map of
the whole environment by computing the position of each pixel in the world
frame. Please complete the code/build-map.cpp to build a point cloud map
and display it in the Pangolin.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a ZIP file containing the source code that
you used to solve the given problems. Note all names of your team members in the
PDF file. Make sure that your ZIP file contains all files necessary to compile and
run your code, but it should not contain any build files or binaries. Please submit
your solution via email to visnav_ss20180Qvision.in.tum.de.

