
Visual Navigation for Flying Robots Computer Vision Group
D. Cremers, X. Gao, V. Usenko Department of Informatics
Summer Semester 2018 Technical University of Munich

Exercise Sheet 4
Topic: Visual Odometry

Submission deadline: Sunday, 13.05.2018, 23:59 pm
Hand-in via email to visnav ss2018@vision.in.tum.de

General Notice

The exercises should be done by yourself, but the final project should be done in
teams of two to three students. We will use Ubuntu 16.04 in this lab course. It is
already installed on the lab computers. If you want to use your own laptop, you will
need to install Ubuntu by yourself.

Files related with the exercise will be placed in directories like ’paper/’ or ’doc/’.
Please read these materials before start answering the questions.

Exercise 1: Feature based visual odometry

In the lecture we’ve explained how to detect ORB features in the images. In this
exercise you need to implement the ORB detection, descriptor computing, descriptor
matching, and then use the matched points to estimate the camera motion. We
provide you two RGB-D image pairs: ORB1.png, ORB2.png, ORB1 depth.png,
ORB2 depth.png, please use these four images to complete the following tasks. The
code framework is provided in computeORB.cpp.

1. ORB detector. The ORB key point is an oriented FAST, in which we need to
compute the angle of each key point. We use OpenCV’s FAST detector to get
fast key points, but you need to implement the angle computation. The angle
θ of a key point can be denoted as:

θ = arctan(m01/m10), (1)

where m01 and m10 are the moments defined in the slides. Here we choose a
16x16 patch around a key point, which means for key point at u, v, we take the
patch from (u−8, v−8) to (u+7, v+7). Please implement the computeAngle()
function using this notation.

Hints: (i) Because we need a patch to compute the angle, key points that are
too close to the image boundary should be removed. (ii) If you plot the angle
of the key points, it will look like they are all pointing at the brighter part of
the image (see Fig. 1). (iii) std::atan() and std::atan2() will give you a radian
angle, but OpenCV uses the degree unit. So please convert it if needed.

1



Figure 1: Oriented FAST key points.

2. ORB descriptor. ORB uses BRIEF descriptor, which is a just 256 or 128 bits
containing 0 and 1s. For each bit we need to compare the image intensity
around the detected key point. The algorithm is described as below:

• Given image I, key point (u, v) and its angle θ, let’s take 256 bits as an
example. The descriptor can be denoted as a vector

d = [d1, d2, . . . , d256], di = {0, 1}.

• For each i = 1, . . . , 256 di is computed as follows. Take two points around
(u, v), say, p,q (this is called as the ORB pattern), and rotate it according
to θ: [

up
′

vp
′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
up
vp

]
. (2)

where up, vp is the coefficients of p and same for q. We denote the rotated
points as p′,q′, then we compare the image intensity of I(p′) and I(q′).
If I(p′), then di = 0, otherwise set di = 1.

In order to simplify the coding, we use 256 boolean variables to represent the
descriptor 1. Please implement the computeORBDesc(). Note the p,q (or
ORB pattern) is given in the code, which is randomly chosen but we need to
keep it same when computing the descriptors.

Hints:

• For p,q we also need boundary checking. If the pattern goes outside the
image, we set the descriptor vector to empty and ignore it when matching
the key points.

132 bytes will be more compact but requires bit operator.

2



• Also please be careful about the degree and radian unit when calling the
sin() and cos() functions.

3. Brute force matching of ORB features. After computing the descriptors, we
need to match them according to the descriptors. Brute force matching is a
simple and commonly used approach for feature matching, especially when
the number of features is not large. Given two sets of descriptors, say, P =
[p1, . . . , pM ] and Q = [q1, . . . , qN ], then for each point in P, we find a point
in Q that has the minimum (Hamming) distance. In practice, we also the a
maximum distance threshold dmax and skip those key points whose distance is
large than dmax. Please implement the bfMatch() function according to these
statements, and we set dmax = 50 in the exercise.

Hints: (i) You need to implement the Hamming distance computation. (ii)
The cv::DMatch struct stores the matching result, where queryIdx is the key
point index in image 1, and trainIdx is the index in image 2. (iii) The matching
results should be same (or similar) as Fig. 2.

Figure 2: Matched key points.

4. Pose estimation. Using the matched key points, we can estimate the camera
motion from image 1 to image 2. Since we provide RGB-D images, so we can
use all the 2D-2D, 3D-2D, 3D-3D methods in this exercise. Please implement
the poseEstimation function series according to the knowledge we talked about
in the course, and compare the results of different approaches.

Hints: (i) OpenCV provides some functions like findEssential(), solvePnP()
and recoverPose() for pose computation, please find their documentation and
use them if needed. (ii) In 3D-2D and 3D-3D cases we use the depth image
to get the 3D points. If the depth value is missing (set to zero in the depth
image), please just skip this point. (iii) Three approaches will give you similar
(but not the same) results, and the 2D-2D estimated translation will have a
scale difference with the other two.

3



Exercise 2: LK optical flow

Optical flow is also a very popular method to track the corner points. In this exer-
cise we are going to implement a optical flow algorithm using the Gauss-Newton’s
framework. An optical flow survey paper is provided in [1], please read it if you have
interest.

1. Single layer forward-additive optical flow. First we start from the simplest
optical flow, namely the single layer forward-additive flow, and then expand it
to inverse and multi-layer. We model the optical flow as a nonlinear optimiza-
tion problem and solve it in a Gauss-Newton’s way. We provide two images for
this exercise: LK1.png and LK2.png, then we extract the GFTT corners [2] in
image 1, and track them in image 2 using optical flow. Let the two images be
Ii, I2, the key points in image 1 are P = {pi} where pi = [xi, yi]

T is the pixel
coordinate. Consider the i-th point, we want to compute it motion ∆xi,∆yi:

min
∆xi,∆yi

∑
W

‖I1 (xi, yi)− I2 (xi + ∆xi, yi + ∆yi)‖2
2, (3)

which means minimizing the quadratic pixel error and
∑
W

means we assume

the pixel values in this window W don’t change. In practice we choose an
8×8 window, namely from (xi − 4, yi − 4) to (xi + 3, yi + 3). Obviously, this
is a forward-addtive optical flow, and the above least squares problem can be
solved by Gauss-Newton iteration. Please answer the following questions and
based on your answers, implement the function OpticalFlowSingleLevel in the
optical flow.cpp file.

• How to derive the jacobian of the error related to the motion?

Hints: (i) Same as the previous job, you still need to remove the points that
were placed near the image boundary, otherwise your image blocks may go
outside the border. (ii) This function is called a single-layer optical flow. After
this we will implement the multilayer optical flow based on this function. In
the main function, we test single-layer optical flow and multi-layer optical flow
for two images and compare them with OpenCV results. As a verification, the
forward single-layer optical flow results should be similar as the results shown
in Fig. 3. The result is not very good, but most of the key points are still
correctly tracked.

2. Inverse-additive optical flow. After you implement the above algorithm, you
will find that at the beginning of the iteration, the Gauss-Newton’s calculation
depends on the gradient information of I2 at (xi, yi). However, the corner
extraction algorithm only guarantees that I1(xi, yi) is a corner point (which
means there is a large gradient here), but for I2, we have no way to assume that
I2 in xi, yi also has a large gradient, so the Gauss-Newton is not necessarily
true. The inverse optical flow does a clever trick by replacing the original
I2(xi + ∆xi, yi + ∆yi) with the gradient at I1(xi, yi). The benefits are:

4



Figure 3: Results of optical flow. The multi-layer result should be similar as
OpenCV.

• I1(xi, yi) is the corner point, the gradient is always meaningful.

• The gradient atI1(xi, yi) does not change with iterations, so it only needs
to be calculated once and it can be used in subsequent iterations, saving
a lot of computing time.

We add a boolean parameter to the OpticalFlowSingleLevel function to specify
whether we want to use a normal algorithm or a inverse algorithm. Please
follow the above instructions to complete the reverse LK optical flow method.

3. Extend to multi layer. Through the experiments, we can see that the optical
flow method can only estimate the error within a few pixels. If the initial
estimate is not good enough, or the image motion is too large, the optical flow
method cannot be effectively estimated (unlike feature matching). However,
using an image pyramid can make the optical flow less sensitive to image mo-
tion. Next, please use a 4 level image pyramid with a zoom factor of 2, to
implement a coarse-to-fine LK optical flow. The function is in OpticalFlow-
MultiLevel().

After completing the implementation, give your optical flow screenshots (for-
ward, reverse, multi level forward, multi level reverse). Then answer the fol-
lowing questions:

• What does the ”coarse-to-fine” mean in multi level processing?

• What is the difference between pyramid use in the optical flow method
and pyramid in the feature method?

Hints: You can use the single layer optical flow written before to help you
achieve multi-layer optical flow.

5



Exercise 3: Direct method

We say that the direct method is an intuitive extension of optical flow. In the
optical flow, we estimate the translation of each pixel (in the case of additive flow).
In the direct method, we minimize the brightness error to estimate the camera’s
rotation and translation (in the form of Lie algebra). Now we will use a very similar
approach to the previous one to implement the direct method. You can feel the
close relationship between the direct method and the optical flow.

1. Single layer direct method. In this exercise, you will use some of the images
in the Kitti dataset. Given left.png and disparity.png, we know that we can
get 3D information of any point in left.png through these two images. Now,
please use the direct method to estimate the pose of the images 000001.png to
000005.png. We call left.png as reference image, and any one of the images
000001.png -000005.png is current image, as shown in Figure 4 shown. Set
the target to be evaluated as Tcur,ref , then take a set of points {pi} in ref. The
pose can be solved by minimizing the following objective function:

E(Tcur,ref) =
1

N

N∑
i=1

∑
Wi

‖Iref (π(pi))− Icur (π (Tcur,ref pi))‖2
2, (4)

where N is the number of points, the π function is the projection function
of the pinhole camera R3 7→ R2, and Wi is a small window around the point
i. With the optical flow method, this problem can be solved by the Gauss-
Newton method. Please answer the following questions and then implement
the DirectPoseEstimationSingleLayer function in direct method.cpp.

• What is the Jacobian dimension of the error relative to the estimated
variable?

• What is the size of the window? Can I take a single point?

Here are some hints in the implementation process:

• This time we randomly take 1000 points in the reference image, not the
corner points. Please consider why direct methods can work without
taking corner points.

• Due to the camera motion, points in the reference image may go beyond
the subsequent image boundaries after being projected. So the final ob-
jective function needs to average the points that are projected internally,
instead of averaging all the points. In the program, we mark the points
projected inside with good points.

• The single-layer direct method doesn’t work very well, but you can see
that the objective function of each iteration will decrease.

6



reference

current

Figure 4: Images used in this exercise.

2. Multi layer direct method. In the following, similar to the optical flow, we
can also extend the direct method to a multi-level pyramid in a coarse-to-fine
process. The direct method of multilayer pyramids allows the image to track
all points even with large movements. Here we use a four-level pyramid with
a zoom factor of 2 to implement the direct method on the pyramid. Please
implement the DirectPoseEstimationMultiLayer function. Here are some tips:

• When scaling an image, the camera intrinsics also need to change. So,
for example, if the image is doubled, how should fx, fy, cx, cy be changed?

• According to the coarse-to-fine process, the pose estimation result of the
upper layer image can be used as the initial condition of the next layer
image.

• During debugging, you can draw a projection of each point on reference
and current to see if they correspond. If they correspond exactly, the
position and pose estimates are accurate.

As a verification, the pose shift portion of images 000001 and 000005 should
be close to:

t1 = [0.005876,−0.01024,−0.0725]T

t5 = [0.0394,−0.0592,−3.9907]T
(5)

7



It can be seen that the vehicle is basically straight forward.

3. Discussion. You have now implemented the Gauss-Newton direct method on
the pyramid. You can adjust some parameters in the experiment, such as the
number of image points, the size of the patch around each point, and so on.
Please consider the following questions:

• In the direct method, can we use similar concepts in optical flow and
propose the concept of inverse, compositional? Do they make sense?

• Consider where the above algorithm can be cached or accelerated?

• Why can we take random points instead of extracting corners?

• Please summarize the similarities, differences, advantages and disadvan-
tages of the direct method with respect to the feature point method.

Submission instructions

A complete submission consists both of a PDF file with the solutions/answers to
the questions on the exercise sheet and a ZIP file containing the source code that
you used to solve the given problems. Note all names of your team members in the
PDF file. Make sure that your ZIP file contains all files necessary to compile and
run your code, but it should not contain any build files or binaries. Please submit
your solution via email to visnav ss2018@vision.in.tum.de.

8



References

[1] S. Baker and I. Matthews, “Lucas-kanade 20 years on: A unifying framework,”
International journal of computer vision, vol. 56, no. 3, pp. 221–255, 2004.

[2] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision and Pat-
tern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on, pp. 593–600, IEEE, 1994.

9


