Practical Course: Vision-based Navigation SS 2018

Lecture 1. Basics

Dr. Jörg Stückler, Dr. Xiang Gao
Vladyslav Usenko, Prof. Dr. Daniel Cremers

Contents

- Course contents and preliminary knowledges
- Framework and mathematic form of a SLAM problem
- 3D geometry

Contents

- Course contents and preliminary knowledges
- Framework and mathematic form of a SLAM problem
- 3D geometry

1. Course contents and preliminary knowledges

- General overview of computer vision tasks

1. Course contents and preliminary knowledges

- Computer vision

Real world cameras
Image and video sequences

1. Course contents and preliminary knowledges

- What is SLAM?

Instituto Universitario de Investigación en Ingeniería de Aragón
UniversidadZaragoza

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raúl Mur-Artal and Juan D. Tardós

```
raulmur@unizar.es tardos@unizar.es
```

Indoor/outdoor localization

1. Course contents and preliminary knowledges

- Computer vision

Direct Sparse Odometry

 Jakob Engel, ${ }^{1,2}$ Vladlen Koltun², Daniel Cremers ${ }^{1}$ July 2016 Technical University Munich

1. Course contents and preliminary knowledges

- What is SLAM?

RGB-D dense reconstruction

1. Course contents and preliminary knowledges

- SLAM applications

Hand-held devices

Autonomous driving

1. Course contents and preliminary knowledges

- Computer vision

Harley and Zisserman, Multiple view geometry in computer vision

Tim Barfoot, State estimation for robotics

1. Course contents and preliminary knowledges

- Course Contents
- Lecture 1. Basic knowledge, 3D motion
- Lecture 2. Lie group/Lie algebra, Camera models
- Lecture 3. State estimation, Nonlinear optimization
- Lecture 4. Visual Odometry
- Lecture 5. Backend Optimization
- Our course takes place at Monday a.m.
- Programming Assignments and Final Project are required

1. Course contents and preliminary knowledges

- Preliminary knowledge
- Math: Calculus, Linear algebra, Probability theory
- Programing: C++/Linux
- Our course takes place at Monday a.m.
- Programming Assignments and Final Project are required

Contents

- Course contents and preliminary knowledges
- Framework and mathematic form of a SLAM problem
- 3D geometry

2. Framework of SLAM

- SLAM problem
- Fundamental problems in intelligent robots
- Where am I?
-Localization
- What is around me?
-Mapping
- Chicken and egg problem
- Localization needs accurate map
- Mapping needs accurate localization

2. Framework of SLAM

- How to do SLAM? -Sensors
- Sensor is the way to measure the outside environment
- Interoseptive sensors: accelerometer, gyroscope ...
- Exteroceptive sensors: camera, laser rangefinder, GPS ...

(a)

(b)

(c)

(d)

(e)

(f)

Some sensors must be placed in a cooperative environment, other can be directly equipped in the robot itself

2. Framework of SLAM

- Visual SLAM -SLAM (mainly) by cameras
- Cameras
- Monocular

Monocular camera

RGB-D (depth) camera

Stereo camera

- Cameras
- Cheap, rich information
- Record 2D projected image of the 3D world
- The 3D-2D projection throws away one dimension: distance

2. Framework of SLAM

- Various kinds of cameras:
- Monocular: image only, need other methods to estimate the depth
- Stereo: disparity to depth
- RGB-D: physical depth measurements

Stereo vision estimates the depth from disparity

Moving stereo: disparity can be estimated in the motion

Ambiguity in mono vision: small + close or large + far away?

2. Framework of SLAM

- SLAM framework

2. Framework of SLAM

- Visual odometry
- Motion estimation betwe ϵ adjacent frames
- Simplest: two-view geometry
- Method
- Feature method
- Direct method
- Backend
- Long-term trajectory and map estimation

- MAP: Maximum of a Posteri
- Filters/Graph Optimization

2. Framework of SLAM

- Loop closing
- Correct the drift in estimation
- Loop detection and correction
- Mapping
- Generate globally consisten map for
navigation/planning/comm nication/visualization etc
- Grid/topological/hybrid maps
- Pointcloud/Mesh/TSDF ...

2. Framework of SLAM

- Mathematical representation of visual SLAM
- Assume a camera is moving in 3D space
- But measurements are taken at discrete times:

$$
\left\{\begin{array} { l l }
{ \boldsymbol { x } _ { k } = f (\boldsymbol { x } _ { k - 1 } , \boldsymbol { u } _ { k } , \boldsymbol { w } _ { k }) } \\
{ \boldsymbol { z } _ { k , j } = h (\boldsymbol { y } _ { j } , \boldsymbol { x } _ { k } , \boldsymbol { v } _ { k , j }) }
\end{array} \quad \text { Motion model } \quad \text { Observation model } \quad \left\{\begin{array}{c}
x_{k}=A_{k} x_{k-1}+B_{k} u_{k}+w_{k} \\
z_{k, j}=C_{j} y_{j}+D_{k} x_{k}+v_{k, j}
\end{array}\right.\right.
$$

Non-linear form
linear form

2. Framework of SLAM

- Questions:

$$
\begin{cases}\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) & \text { Motion model } \\ \boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right) & \text { Observation model }\end{cases}
$$

- How to represent state variables?
- 3D geometry, Lie group and Lie algebra
- Exact form of motion/observation model?
- Camera intrinsic and extrinsics
- How to estimate the state given measurement data?
- State estimation problem
- Filters and optimization

Contents

- Course contents and preliminary knowledges
- Framework and mathematic form of a SLAM problem
- 3D geometry

3. 3D geometry

- Point and Coordinate system
- 2D: (x, y) and angle
- 3D?

3. 3D geometry

- 3D coordinate system
- Vectors and their coordinates

Right handed

Left handed

3. 3D geometry

- Vector operations
- Addition/subtraction
- Dot product

$$
\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{a}^{T} \boldsymbol{b}=\sum_{i=1}^{3} a_{i} b_{i}=|\boldsymbol{a}||\boldsymbol{b}| \cos \langle\boldsymbol{a}, \boldsymbol{b}\rangle .
$$

- Cross product

$$
\begin{gathered}
\boldsymbol{a} \times \boldsymbol{b}=\left[\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]=\left[\begin{array}{c}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right]=\left[\begin{array}{ccc}
0 & -a_{3} & a_{2} \\
a_{3} & 0 & -a_{1} \\
-a_{2} & a_{1} & 0
\end{array}\right] \boldsymbol{b} \triangleq \boldsymbol{a}^{\wedge} \boldsymbol{b} . \\
\text { Skew-symmetric operator }
\end{gathered}
$$

3. 3D geometry

- Questions
- Compute the coordinates in different systems?
- In SLAM:
- Fixed world frame
- Moving camera frame
- Other sensor frames

3. 3D geometry

- 3D rigid body motion can be described with rotation and translation

- Translation is just a vector addition
- How to represent rotations?

3. 3D geometry

- Rotation
- Consider coordinate system $\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$ is rotated and become $\left(\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right)$
- Vector \boldsymbol{a} is fixed, then how are its coordinates changed?

$$
\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right]\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right]
$$

- Left multiplied by $\left[e_{1}^{T}, e_{2}^{T}, e_{3}^{T}\right]^{T}$

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{lll}
e_{1}^{T} e_{1}^{\prime} & e_{1}^{T} e_{2}^{\prime} & e_{1}^{T} e_{3}^{\prime} \\
e_{2}^{T} e_{1}^{\prime} & e_{2}^{T} e_{2}^{\prime} & e_{2}^{T} e_{3}^{\prime} \\
e_{3}^{T} e_{1}^{\prime} & e_{3}^{T} e_{2}^{\prime} & e_{3}^{T} e_{3}^{\prime}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right] \triangleq \boldsymbol{R} \boldsymbol{a}^{\prime} . \quad \text { Rotation matrix }
$$

3. 3D geometry

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{lll}
\boldsymbol{e}_{1}^{T} e_{1}^{\prime} & e_{1}^{T} e_{2}^{\prime} & e_{1}^{T} e_{3}^{\prime} \\
\boldsymbol{e}_{2}^{T} e_{1}^{\prime} & e_{2}^{T} e_{2}^{\prime} & e_{2}^{T} e_{3}^{\prime} \\
e_{3}^{T} e_{1}^{\prime} & e_{3}^{T} e_{2}^{\prime} & e_{3}^{T} e_{3}^{\prime}
\end{array}\right]\left[\begin{array}{c}
a_{1}^{\prime} \\
a_{2}^{\prime} \\
a_{3}^{\prime}
\end{array}\right] \triangleq \boldsymbol{R \boldsymbol { a } ^ { \prime }} .
$$

- R is rotation matrix, which satisfies:
- R is orthogonal
- $\operatorname{Det}(\mathrm{R})=+1$ (if $\operatorname{Det}(\mathrm{R})=-1$ then it's improper rotation)
- Special orthogonal group:

$$
S O(n)=\left\{\boldsymbol{R} \in \mathbb{R}^{n \times n} \mid \boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}, \operatorname{det}(\boldsymbol{R})=1\right\} .
$$

- Rotation from frame 2 to 1 can be written as:

$$
\begin{array}{ll}
a_{1}=R_{12} a_{2} \quad \text { and vise vesa: } & a_{2}=R_{21} a_{1} \\
& R_{21}=R_{12}^{-1}=R_{12}^{T}
\end{array}
$$

3. 3D geometry

- Rotation plus translation:

$$
a^{\prime}=R a+t
$$

- Compounding rotation and translation:
- $\quad b=R_{1} a+t_{1}, \quad c=R_{2} b+t_{2}$.
$\boldsymbol{c}=\boldsymbol{R}_{2}\left(\boldsymbol{R}_{1} \boldsymbol{a}+\boldsymbol{t}_{1}\right)+\boldsymbol{t}_{2}$.
- Homogeneous form:

$$
\left[\begin{array}{l}
a^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{a} \\
1
\end{array}\right] \triangleq \boldsymbol{\triangleq}\left[\begin{array}{l}
a \\
1
\end{array}\right] . \quad \tilde{b}=T_{1} \tilde{a}, \tilde{c}=\boldsymbol{T}_{2} \tilde{b} \quad \Rightarrow \tilde{c}=\boldsymbol{T}_{2} \boldsymbol{T}_{1} \tilde{a}
$$

$$
\text { Inverse: } \quad \boldsymbol{T}^{-1}=\left[\begin{array}{cc}
\boldsymbol{R}^{T} & -\boldsymbol{R}^{T} t \\
\mathbf{0}^{T} & 1
\end{array}\right] .
$$

3. 3D geometry

- Homogenous coordinates:

$$
\tilde{a}=\left[\begin{array}{l}
a \\
1
\end{array}\right] \quad \tilde{a}=\left[\begin{array}{c}
a \\
1
\end{array}\right]=k\left[\begin{array}{l}
a \\
1
\end{array}\right]
$$

Still keeps equal when multiplying any non-zero factors

- Transform matrix forms Special Euclidean Group

$$
S E(3)=\left\{\left.\boldsymbol{T}=\left[\begin{array}{cc}
\boldsymbol{R} & \boldsymbol{t} \\
\mathbf{0}^{T} & 1
\end{array}\right] \in \mathbb{R}^{4 \times 4} \right\rvert\, \boldsymbol{R} \in S O(3), \boldsymbol{t} \in \mathbb{R}^{3}\right\} .
$$

3. 3D geometry

- Alternative rotation representations
- Rotation vectors
- Euler angles
- Quaternions

- Rotation vectors
- Angle + axis: θn
- Rotation angle θ

Rotation vectors
Only three parameters

- Rotation axis n
- Rotation vector to rotation matrix: Rodrigues' formula

$$
\boldsymbol{R}=\cos \theta \boldsymbol{I}+(1-\cos \theta) \boldsymbol{n} \boldsymbol{n}^{T}+\sin \theta \boldsymbol{n}^{\wedge} .
$$

- Inverse:

$$
\theta=\arccos \left(\frac{\operatorname{tr}(\boldsymbol{R})-1}{2}\right) . \quad \boldsymbol{R} \boldsymbol{n}=\boldsymbol{n} .
$$

3. 3D geometry

- Euler angles
- Any rotation can be decomposed into three principal rotations

- However the order of axis can be defined very differently:
- Roll-pitch-yaw (in navigation) Spin-nutation-precession in mechanics

XYZ order
3-1-3 order

3. 3D geometry

- Gimbal lock
- Singularity always exist if we want to use 3 parameters to describe rotation
- Degree-of-Freedom is reduced in singular case
- In yaw-pitch-roll order, when pitch=90 degrees
normal

singular

3. 3D geometry

- Quaternions
- In 2D case, we can use (unit) complex numbers to denote rotations

$$
z=x+i y=e^{i}
$$

Multiply i to rotate 90 degrees

- How about 3D case?
- (Unit) Quaternions
- Extended from complex numbers
- Three imaginary and one real part:

$$
\boldsymbol{q}=q_{0}+q_{1} i+q_{2} j+q_{3} k,
$$

- The imaginary parts satisfy:

$$
\left\{\begin{array}{l}
i^{2}=j^{2}=k^{2}=-1 \\
i j=k, j i=-k \\
j k=i, k j=-i \\
k i=j, i k=-j
\end{array}\right.
$$

i,j,k look like complex numbers when multiplying with themselves
And look like cross product when multiply with others

3. 3D geometry

- Quaternions

$$
\boldsymbol{q}=q_{0}+q_{1} i+q_{2} j+q_{3} k, \quad \boldsymbol{q}=[s, \boldsymbol{v}], \quad s=q_{0} \in \mathbb{R}, \boldsymbol{v}=\left[q_{1}, q_{2}, q_{3}\right]^{T} \in \mathbb{R}^{3},
$$

- Operations

$$
\begin{array}{rlrl}
\boldsymbol{q}_{a} \pm \boldsymbol{q}_{b}= & {\left[s_{a} \pm s_{b}, \boldsymbol{v}_{a} \pm \boldsymbol{v}_{b}\right] .} & & \boldsymbol{q}_{a}^{*}=s_{a}-x_{a} i-y_{a} j-z_{a} k=\left[s_{a},-\boldsymbol{v}_{a}\right] . \\
\boldsymbol{q}_{a} \boldsymbol{q}_{b}= & s_{a} s_{b}-x_{a} x_{b}-y_{a} y_{b}-z_{a} z_{b} & & \left\|\boldsymbol{q}_{a}\right\|=\sqrt{s_{a}^{2}+x_{a}^{2}+y_{a}^{2}+z_{a}^{2}} . \\
& +\left(s_{a} x_{b}+x_{a} s_{b}+y_{a} z_{b}-z_{a} y_{b}\right) i & & \\
& +\left(s_{a} y_{b}-x_{a} z_{b}+y_{a} s_{b}+z_{a} x_{b}\right) j & & \boldsymbol{q}^{-1}=\boldsymbol{q}^{*} /\|\boldsymbol{q}\|^{2} . \\
& +\left(s_{a} z_{b}+x_{a} y_{b}-y_{b} x_{a}+z_{a} s_{b}\right) k . & & \\
& & k \boldsymbol{q}=[k s, k \boldsymbol{v}] .
\end{array}
$$

$\boldsymbol{q}_{a} \boldsymbol{q}_{b}=\left[s_{a} s_{b}-\boldsymbol{v}_{a}^{T} \boldsymbol{v}_{b}, s_{a} \boldsymbol{v}_{b}+s_{b} \boldsymbol{v}_{a}+\boldsymbol{v}_{a} \times \boldsymbol{v}_{b}\right]$.

$$
\boldsymbol{q}_{a} \cdot \boldsymbol{q}_{b}=s_{a} s_{b}+x_{a} x_{b} i+y_{a} y_{b} j+z_{a} z_{b} k .
$$

3. 3D geometry

- From quaternions to angle-axis:

$$
\boldsymbol{q}=\left[\cos \frac{\theta}{2}, n_{x} \sin \frac{\theta}{2}, n_{y} \sin \frac{\theta}{2}, n_{z} \sin \frac{\theta}{2}\right]^{T} .
$$

- Inverse:

$$
\left\{\begin{array}{l}
\theta=2 \arccos q_{0} \\
{\left[n_{x}, n_{y}, n_{z}\right]^{T}=\left[q_{1}, q_{2}, q_{3}\right]^{T} / \sin \frac{\theta}{2}}
\end{array}\right.
$$

- Rotate a vector by quaternions:
- Vector p is rotated by q and become p^{\prime}, how to write their relationships?
- Write p as quaternion (pure imaginary): $\quad \boldsymbol{p}=[0, x, y, z]=[0, \boldsymbol{v}]$.
- Then:

$$
\boldsymbol{p}^{\prime}=\boldsymbol{q} \boldsymbol{p} \boldsymbol{q}^{-1} . \quad \text { Also pure imaginary }
$$

Notes on programing assignments

- Use cmake to manage your C++ project in Linux
- Use Eigen to handle matrix and geometry computations

