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1. Course contents and preliminary knowledges 

▪ General overview of computer vision tasks
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1. Course contents and preliminary knowledges 

▪ Computer vision
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Real world cameras Image and video sequences

Object detection
Object recognition

Object tracking
Segmentation

…
SLAM

CV tasks



1. Course contents and preliminary knowledges 

▪ What is SLAM?
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Indoor/outdoor localization



1. Course contents and preliminary knowledges 

▪ Computer vision
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Dense/semi-dense reconstruction



1. Course contents and preliminary knowledges 

▪ What is SLAM?
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RGB-D dense reconstruction



1. Course contents and preliminary knowledges 

▪ SLAM applications
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Hand-held devices Autonomous driving Augmented reality/VR



1. Course contents and preliminary knowledges 

▪ Computer vision
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Harley and Zisserman, 
Multiple view geometry 
in computer vision

Tim Barfoot, State 
estimation for robotics



1. Course contents and preliminary knowledges 

▪ Course Contents

▪ Lecture 1. Basic knowledge, 3D motion 

▪ Lecture 2. Lie group/Lie algebra, 
Camera models 

▪ Lecture 3. State estimation, Nonlinear 
optimization

▪ Lecture 4. Visual Odometry

▪ Lecture 5. Backend Optimization

▪ Our course takes place at Monday a.m. 

▪ Programming Assignments and Final 
Project are required
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1. Course contents and preliminary knowledges 

▪ Preliminary knowledge

▪ Math: Calculus,  Linear algebra, Probability theory

▪ Programing: C++/Linux

▪ Our course takes place at Monday a.m. 

▪ Programming Assignments and Final Project are required
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2. Framework of SLAM

▪ SLAM problem

▪ Fundamental 
problems in 
intelligent robots

▪ Where am I?
-Localization

▪ What is around me? 
-Mapping

▪ Chicken and egg problem

▪ Localization needs 
accurate map

▪ Mapping needs 
accurate localization
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2. Framework of SLAM

▪ How to do SLAM? -Sensors

▪ Sensor is the way to measure the outside environment

▪ Interoseptive sensors: accelerometer, gyroscope …

▪ Exteroceptive sensors: camera, laser rangefinder, GPS …
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Some sensors must be 
placed in a cooperative 
environment, other can 
be directly equipped in 
the robot itself



2. Framework of SLAM

▪ Visual SLAM -SLAM (mainly) by 
cameras

▪ Cameras

▪ Monocular

▪ Stereo

▪ RGB-D

▪ Omnidirectional, Event camera, etc

▪ Cameras

▪ Cheap, rich information

▪ Record 2D projected image of the 
3D world

▪ The 3D-2D projection throws away 
one dimension: distance
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Monocular camera

RGB-D (depth) camera

Stereo camera



2. Framework of SLAM

▪ Various kinds of cameras:

▪ Monocular: image only, need 
other methods to estimate the 
depth

▪ Stereo: disparity to depth

▪ RGB-D: physical depth 
measurements
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Moving stereo: disparity can be estimated in the motion

Stereo vision estimates the depth from disparity

Ambiguity in mono vision: small + close or large + far away?



2. Framework of SLAM

▪ SLAM framework
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Sensor data
Front-end:
Visual 
odometry

Back-end:
Filter or 
Optimization

Mapping

Loop Closing



2. Framework of SLAM

▪ Visual odometry

▪ Motion estimation between 
adjacent frames

▪ Simplest: two-view 
geometry

▪ Method

▪ Feature method

▪ Direct method

▪ Backend

▪ Long-term trajectory and 
map estimation

▪ MAP: Maximum of a Posteri

▪ Filters/Graph Optimization
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2. Framework of SLAM

▪ Loop closing
▪ Correct the drift in 

estimation

▪ Loop detection and 
correction

▪ Mapping
▪ Generate globally consistent 

map for 
navigation/planning/commu
nication/visualization etc

▪ Grid/topological/hybrid 
maps 

▪ Pointcloud/Mesh/TSDF …
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Long-time 
trajectory is not 
accurate due to 
estimation drifts

2D grid map 2D topological map

TSDF modelsPoint cloud maps



2. Framework of SLAM

▪ Mathematical representation of visual SLAM

▪ Assume a camera is moving in 3D space

▪ But measurements are taken at discrete times: 
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Motion model

Observation model

Non-linear form

ቊ
𝑥𝑘 = 𝐴𝑘𝑥𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘

𝑧𝑘,𝑗 = 𝐶𝑗𝑦𝑗 + 𝐷𝑘𝑥𝑘 + 𝑣𝑘,𝑗

linear form



2. Framework of SLAM

▪ Questions: 

▪ How to represent state variables? 

▪ 3D geometry, Lie group and Lie algebra

▪ Exact form of motion/observation model?

▪ Camera intrinsic and extrinsics

▪ How to estimate the state given measurement data?

▪ State estimation problem

▪ Filters and optimization  
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Motion model

Observation model
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3. 3D geometry

▪ Point and Coordinate system

▪ 2D: (x,y) and angle

▪ 3D?
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3. 3D geometry

▪ 3D coordinate system

▪ Vectors and their coordinates
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Right handed Left handed



3. 3D geometry

▪ Vector operations

▪ Addition/subtraction

▪ Dot product

▪ Cross product
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Skew-symmetric operator



3. 3D geometry

▪ Questions

▪ Compute the coordinates in different systems? 

▪ In SLAM:

▪ Fixed world frame

▪ Moving camera frame

▪ Other sensor frames
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3. 3D geometry

▪ 3D rigid body motion can be described with rotation and translation

▪ Translation is just a vector addition

▪ How to represent rotations? 
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3. 3D geometry

▪ Rotation

▪ Consider coordinate system                        is rotated and become 

▪ Vector      is fixed, then how are its coordinates changed? 

▪ Left multiplied by  
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𝑒1
𝑇 , 𝑒2

𝑇 , 𝑒3
𝑇 𝑇

Rotation matrix



3. 3D geometry

▪ R is rotation matrix, which satisfies:

▪ R is orthogonal

▪ Det(R) = +1 (if Det(R)=-1 then it’s improper rotation)

▪ Special orthogonal group:

▪ Rotation from frame 2 to 1 can be written as: 
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𝑎1 = 𝑅12𝑎2 𝑎2 = 𝑅21𝑎1and vise vesa: 

𝑅21 = 𝑅12
−1 = 𝑅12

𝑇



3. 3D geometry

▪ Rotation plus translation:

▪ Compounding rotation and translation:

▪

▪ Homogeneous form: 
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Inverse:



3. 3D geometry

▪ Homogenous  coordinates:

▪ Transform matrix forms Special Euclidean Group
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Still keeps equal when multiplying any non-zero factors



3. 3D geometry

▪ Alternative rotation representations

▪ Rotation vectors

▪ Euler angles

▪ Quaternions

▪ Rotation vectors

▪ Angle + axis:

▪ Rotation angle

▪ Rotation axis

▪ Rotation vector to rotation matrix:    Rodrigues’ formula

▪ Inverse:
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Rotation vectors
𝜃𝑛

𝜃

𝑛
Only three parameters



3. 3D geometry

▪ Euler angles

▪ Any rotation can be decomposed into three principal rotations

▪ However the order of axis can be defined very differently:

▪ Roll-pitch-yaw (in navigation)      Spin-nutation-precession in mechanics
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Original First Second Third

XYZ order 3-1-3 order



3. 3D geometry

▪ Gimbal lock

▪ Singularity always exist if we want to use 3 parameters to describe 
rotation

▪ Degree-of-Freedom is reduced in singular case

▪ In yaw-pitch-roll order, when pitch=90 degrees
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normal singular



3. 3D geometry

▪ Quaternions

▪ In 2D case, we can use (unit) complex numbers to denote rotations

▪ How about 3D case?

▪ (Unit) Quaternions

▪ Extended from complex numbers

▪ Three imaginary and one real part:

▪ The imaginary parts satisfy:
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z = x + iy = reiq Multiply i to rotate 90 degrees

i,j,k look like complex numbers when multiplying 
with themselves
And look like cross product when multiply with 
others



3. 3D geometry

▪ Quaternions

▪ Operations
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3. 3D geometry

▪ From quaternions to angle-axis:

▪ Inverse: 

▪ Rotate a vector by quaternions:

▪ Vector     is rotated by     and become      , how to write their relationships? 

▪ Write     as quaternion (pure imaginary):

▪ Then:
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𝑝 𝑞 𝑝′

𝑝

Also pure imaginary



Notes on programing assignments

▪ Use cmake to manage your C++ project in Linux

▪ Use Eigen to handle matrix and geometry computations
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