Computer Vision Group | : m
Prof. Daniel Cremers "o 5"

Technische Universitat Mianchen

Practical Course: Vision-based Navigation
SS 2018

Lecture 3. State Estimation

Dr. J6rg Stuckler, Dr. Xiang Gao
Vladyslav Usenko, Prof. Dr. Daniel Cremers



Contents

" From state estimation to least square
= Batch least square
=  Application: estimate camera pose by iterative method

2 Dr. Jorg Stiickler, Computer Vision Group, TUM



Contents

" From state estimation to least square
= Batch least square
=  Application: estimate camera pose by iterative method

3 Dr. Jorg Stiickler, Computer Vision Group, TUM



1. From state estimation to least square

= Recall the motion model and observation model

4
T = f(Tr_1,up, wy)

| Rk = h(yj, Tk, vk ;)

= How to estimate the unknown variables given the observation data?

4 Dr. Jorg Stiickler, Computer Vision Group, TUM



1. Batch state estimation

Batch approa

ch

= Gijve all the measurements

= To estimate all the state variables

State variables:

Observation and input:

u={us,uz, ),z = {2}

Our purpose:

Bayes’ Rule:

Plx|z,u).
Likehood Priori
el 79 = PROPGE)
P P(zlw)
Posteriori

5 Dr. Jorg Stiickler, Computer Vision Group, TUM



1. From state estimation to least square

= |t is usually hard to write out the full distribution of Bayes’ formula,
but we can:

= MAP: Maximum A Posteriori

P(z|x,u)P(x|u)
P(z|u)
= argmaxP (z|x)P(x|u) t

a

Xppap = arng?XP(x|u, z) = argmax

Drop denominator because it
is not relevant with x

Drop u because z is not relevant with u

" “In which state it is most like to produce such measurements”
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1. From state estimation to least square

= From MAP to batch least square

= We assume the noise variables are independent, so that the joint pdf
can be factorized:

K
P(z|x) = l_[ P(z|xy)
k=0

" Let’s consider a single observation: zg,j = h(yj, ) + v 5.
= Affected by white Gaussian noise: v i~N(0,Qr ;)

= The observation model gives us a conditional pdf:
P(zjklTr.y;) = N (M(y;, k), Q) -
= Then how to compute the MAP of x,y given z?
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1. From state estimation to least square

= @Gaussian distribution (matrix form)

P(x) = :T exp (i(mp)TZl(m”)) :
VJ2m)Y de(z) :

= Take minus logarithm at both sides:

(x — ;L)TE_I (x—p).

Lo | =

—In(P(z)) = %m ((271')N det (2)) +

Constant w.r.t x Mahalanobis distance (sigma-norm)

= Maximum of P(x) is equivalent to minimum of —In(P(x))
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1. From state estimation to least square

= Take this into the MAP:

Information matrix

Max: P(zjx|zr,y;) = N (h(y;. xr), Qr,;) - /

T
mm) Xj,y; = argmin ((Zk,j - h()’jrxk)) Qji (Zk,j - h(Yj»xk))>

I

Error or residual of single observation

= We turn a MAP problem into a least square problem
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1. From state estimation to least square

= Batch least square

= QOriginal problem Least square
Define the errors(residuals)

xy = f(Tr-1,up, wy) ey =T — f(@p_1.up)

1, — R — ] . ) .
Zij = h(yj, Tr, vk j) €yjk = Zkj — (T Y;).

Xpyap = argmaxP(z|x)P(x|u)

= Sum of the squared residuals:

. T —1 E E T —1
min ")T(:‘B) - E'ngRk E'U,k + eymkﬂijﬂjey'kJ
k kg
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1. From state estimation to least square

_ E T —1 E i E T —1
'j(m) - BL‘JIPR;{' B'ka‘ —|— ey,kak!jeykj+
k kg

= Some notes:

= Because of noise, when we take the estimated trajectory and map into
the models, they won’t fit perfectly

= Then we adjust our estimation to get a better estimation (minimize the
error)

= The error distribution is affected by noise distribution (information
matrix)

= Structure of the least square problem
= Sum of many squared errors
= The dimension of total state variable maybe high
= But single error item is easy (only related to two states in our case)

= |f we use Lie group and Lie algebra, then it’s a non-constrained least
square
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2. Batch least square

= How to solve a least square problem?
= Non-linear, discrete time, non-constrained

= Let’s start from a simple example

" Consider minimizing a squared error: min %Hf (z)]]2.
= When fis simple, just solve:
R™
d xr €
o,
da

= And we will find the maxima/minima/saddle points

Local optima in neural networks
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2. Batch least square

= When fis a complicated function: | |
= df/dx=0is hard to solve
= We use iterative methods

= |terative methods

1. Start from a initial estimation X

2. Atiteration k , we find a incremental Ax, to make ||f(x; + 4x,)||5
become smaller

3. If Ax; is small enough, stop (converged)
If not, set xx+1 = xx + Ax; and return to step 2.
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2. Batch least square

= How to find the incremental part?
= By the gradient
= Taylor expansion of the object function:

1
|f(z+ A2)||5 ~ || f(2)]3 + T (x) Az + §AwTHAw.

Jacobian Hessian

= First order methods and second order methods
= First order: (Steepest descent)

rrAlgcnllf(x)Ilg + JAx Incremental will be:  Azx* = —J7 (z).

Usually we need a step size
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2. Batch least square

Zig-zag in steepest descent

as

0s

16

Other shortcomings

Slow convergence speed
Slow when close to the minimum
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2. Batch least square

= Second order methods

1
If (2 + Az)|3 ~ || f(2)[z + J (x) Az + §AmTHA:n.

= Solve an increment to minimize it:

Az* =argmin||f () ||3 + J (z) Az + %AmTHA:s.

Let the derivative to 4x be zero, then we get: HAz = —-J7T.

This is called Newton’s method
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2. Batch least square

= Second order method converges more quickly than first order
methods

= But the Hessian matrix maybe hard to compute: HAx = —J7T.

= Can we avoid the Hessian matrix and also keeps second order’s
convergence speed?

= Gauss-Newton
= Levenberg-Marquardt
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2. Batch least square

= Gauss-Newton
= Taylor expansion of f(x): fx+Ax) = [(x) 4+ J(z) Az.

= Then the squared error becomes:

(f (@) + J (z) Az)" (f (z) + J (z) Az)

&

SIf (@) + T () Ax|® =

b | =

= 1 (P @3 + 27 (@) T() Az + AaT T (@) T(@)Ax)

= Also let its derivative with Ax be zero:

2J(z)" f(x) + 2T (x)" T (z) Az = 0.

H g HAx =g.
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2. Batch least square

Jx) J(x)Ax = —J(z)" f(x).
= Gauss-Newton use J(x)"J(x) as an approximation of the Hessian

= Therefore avoiding the computation of H in the Newton’s method

= But /®)'J(x) is only semi-positive definite
= H maybe irreversible when JAT J has null space —{(,()

A‘f("\ ._-..ao“' ‘fh(ﬂ. -
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2. Batch least square

= Levernberg-Marquardt method

Trust region approach: approximation is only valid in a region

Evaluate if the approximation is good:

flx+ Az) — f(x)
J (x) Ax ‘

If rho is large, increase the region

p = Real descent/approx. descent

If rho is small, decrease the region

1
= LM optimization: min> 1 Cei) + T o) Axp||?, st ]| Ax||? <

= Assume the approximation is only good within a ball
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2. Batch least square

= Use Lagrange multipliers:
: 1 2 2
rgllln—llf(xk) + JCe)Ax || st || Ax||* <
Xk 2
: 1 2 A 2
=) min > |1 (i) +J o) A2 + 5 [1 x|

= Expand it just like in G-N’s case, the incremental will be:

()T () + A Ax = g

This Al increase the semi-positive definite property of the Hessian
= Also balancing the first-order and second-order items
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2. Batch least square

= QOther methods
= Dog-leg method
= Conjugate gradient method
= Quasi-Newton’s method

Pseudo-Newton’s method

= You can find more in optimization books if you are interested

= |n SLAM, we use G-N or L-M to solve camera’s motion, pixel’s
movement, optical-flow, etc.

23 Dr. Jorg Stiickler, Computer Vision Group, TUM



Batch least square

Problem in the Practical Assignment

Curve fitting: find best parameters a,b,c from the observation data:

Curve function: y = errqil(f»f-:r—2 + bxr + ¢) + w,

Error: y
e =y; — exp(axi2 + bx; + c)
Least square problem:

ab,c

N
= argminz ly; — exp(axi + bx; + c)||?

=1

24

60,

501

a0f

30

201

10p

—10!
—0.2
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2. Batch least square

You are asked to solve this problem with a hand-written Gauss-
Newton’s method and use optimization libraries.

= Libraries:

= Google Ceres Solver http://ceres-solver.org/
= G20: https://github.com/RainerKuemmerle/g20

You can choose one of them to implement your estimation
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2. Batch least square

= Google Ceres
= An optimization library for solving least square problems
= Tutorial: http://ceres-solver.org/tutorial.html

= Define your residual class as a functor (overload the () operator)

struct ExponentialResidual {
ExponentialResidual(double x, double y)

Px_(x), y_(y) {}

template <typename T>

bool operator()(const T* const m, const T* const c, T* residual) const {
residual[@] = T(y_) - exp(m[e] * T(x_) + c[@]);
return true;

¥

private:

// Observations for a sample.
const double x_;

const double y_;

3
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http://ceres-solver.org/tutorial.html

2. Batch least square

= Build the optimization problem:

double m
double c

0.0;
0.0;

Problem problem;
for (int i = ©; i < kNumObservations; ++i) {
CostFunction* cost_function =
new AutoDiffCostFunction<ExponentialResidual, 1, 1, 13(
new ExponentialResidual(data[2 * i], data[2 * i + 1]));
problem.AddResidualBlock(cost_function, NULL, &m, &c);

¥

= With auto-diff, Ceres will compute the Jacobians for you
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2. Batch least square

= Finally solve it by calling the Solve() function and get the result
summary

= You can set some parameters like number of iterations, stop
conditions or the linear solver type.

Solver: :0ptions options;
options.max_num_iterations = 25;
options. linear_solver_type = ceres: :DENSE_QR;

options.minimizer_progress_to_stdout = true;

Solver: :Summary summary;

Solve(options, &problem, &summary):;
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2. Batch least square

= G20

= General Graph Optimization

= Need to convert the least square problem into a graph
=  Graph Optimization

= State variables are vertices

= Residuals/Errors are edges connecting those vertices

= Edges can be unary/binary/multiple

: O
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2. Batch least square

= Use g2o0 to solve your least square problem
= Define your vertices and edges (or use the built-in vertices and edges in
g20)
= Build the problem by adding vertices and edges into it
= Set the optimization parameters (linear solver type, iterations, etc.)
= Call solve function
= Fetch the results from the graph
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2. Batch least square

= Tutorial of g20

= http://ais.informatik.uni-
freiburg.de/publications/papers/kuemmerlellicra.pdf

= Doc/ in the github repo: https://github.com/RainerKuemmerle/g20

= Examples
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2. Batch least square

= Summary

= |n the batch estimation, we estimate all the status variable given all the
measurements and input

= The batch estimation problem can be formulated into a least square
problem, after solving it we get a MAP estimation

= The least square problem can be solved by iterative methods like
gradient descent, Newton’s method, Gauss-Newton or Levernberg-
Marquardt method

= The least square problem can also be represented by a graph and forms
a (factor) graph optimization problem
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3. Application: estimate camera pose

= Suppose we want to estimate the camera pose
= We have several observations from the projection function

u
1

= Minimizing the reprojection error:

= K(RP; + t) = KTP,

i

N
1
(R,t)"=T" = argminzz lu; — m(RP; + ¢t)||5
i=1

= Where m(-) is the projection equation (observation model)

34 Dr. Jorg Stiickler, Computer Vision Group, TUM



3. Application: estimate camera pose

Linearize the error:

Derivative is defined by SE(3) disturb model:

e;(x @ Ax) = e;(x) + J(x)Ax

de I e(6EDBT)—e(T)
aT — 6850 5&
lK(chGBT)P —lKTP
— A A
= lim
6&-0 55
_ de 0de OP'
Let p’ = TP then use chain rule: 7 =3P a7
For P' we have:
X’ Y/
: - : l U = fm? + Cp, ?r:fy? + ¢y
st fr 0 ¢y X’
R R U o P | e & om | [0 & -
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3. Application: estimate camera pose

o(TP’ __p!
" The second item: (TP) = [ I P A] See Lecture 2.
' oT oT o

= Remove the homogeneous part:

a(TP")
— _p'A
7 1 —pP'"]
= Put them together:
[ f. X XY X2 v ]
e [ & 0 —BE  _LEX fiBX b
aT B U 4"_!! _f'HYf _f _ J'y}/” erX;Y’ f‘.qu
i 7 Z-;z iy Z:Q Z:Q VA i
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3. Application: estimate camera pose

= |f we want to take the derivative of Point P

u
1

de 0dedP’  [f,/Z' O —fX'/Z'
oP 0P 9P 0 f,/Z' —f,Y'/Z"

= K(RP; + t) = KTP;

i

= Pjs not relevant to translation t
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3. Application: estimate camera pose

= We can also compute these Jacobians in SO(3)

= With Jacobian in manifold it will be easy to perform Gauss-Newton
iterations to solve the camera’s motion iteratively
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Dr. Jirgen Sturm, Computer
Vision Group, TUM

Any Questions?

Visual Navigation for Flying Robots
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