Practical Course: Vision-based Navigation SS 2018

Lecture 3. State Estimation

Dr. Jörg Stückler, Dr. Xiang Gao
Vladyslav Usenko, Prof. Dr. Daniel Cremers

Contents

- From state estimation to least square
- Batch least square
- Application: estimate camera pose by iterative method

Contents

- From state estimation to least square
- Batch least square
- Application: estimate camera pose by iterative method

1. From state estimation to least square

- Recall the motion model and observation model

$$
\left\{\begin{array}{l}
\boldsymbol{x}_{k}=f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}, \boldsymbol{w}_{k}\right) \\
\boldsymbol{z}_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}, \boldsymbol{v}_{k, j}\right)
\end{array}\right.
$$

- How to estimate the unknown variables given the observation data?

1. Batch state estimation

- Batch approach
- Give all the measurements
- To estimate all the state variables
- State variables:

$$
\boldsymbol{x}=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{M}\right\} .
$$

Observation and input:

$$
u=\left\{u_{1}, u_{2}, \cdots\right\}, z=\left\{z_{k, j}\right\}
$$

- Our purpose:

$$
P(\boldsymbol{x} \mid \boldsymbol{z}, \boldsymbol{u}) .
$$

- Bayes' Rule:

Likehood Priori

$$
p(x \mid u, z)=\frac{P(z \mid x, u) p(x \mid u)}{P(z \mid u)}
$$

Posteriori

1. From state estimation to least square

- It is usually hard to write out the full distribution of Bayes' formula, but we can:
- MAP: Maximum A Posteriori

$$
\begin{gathered}
x_{M A P}=\underset{x}{\operatorname{argmax}} P(x \mid u, z)=\operatorname{argmax} \frac{P(z \mid x, u) P(x \mid u)}{P(z \mid u)} \\
=\operatorname{argmax} P(z \mid x) P(x \mid u) \\
\text { Drop u because } \mathrm{z} \text { is not relevant with } \mathrm{u}
\end{gathered}
$$

- "In which state it is most like to produce such measurements"

1. From state estimation to least square

- From MAP to batch least square
- We assume the noise variables are independent, so that the joint pdf can be factorized:

$$
P(z \mid x)=\prod_{k=0}^{K} P\left(z_{k} \mid x_{k}\right)
$$

- Let's consider a single observation:
- Affected by white Gaussian noise:

$$
\begin{aligned}
& z_{k, j}=h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}\right)+\boldsymbol{v}_{k, j}, \\
& v_{k, j} \sim N\left(0, Q_{k, j}\right)
\end{aligned}
$$

- The observation model gives us a conditional pdf:

$$
P\left(\boldsymbol{z}_{j, k} \mid \boldsymbol{x}_{k}, \boldsymbol{y}_{j}\right)=N\left(h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}\right), \boldsymbol{Q}_{k, j}\right) .
$$

- Then how to compute the MAP of x, y given z ?

1. From state estimation to least square

- Gaussian distribution (matrix form)

$$
P(\boldsymbol{x})=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)
$$

- Take minus logarithm at both sides:

$$
\begin{aligned}
-\ln (P(\boldsymbol{x}))= & \frac{1}{2} \ln \left((2 \pi)^{N} \operatorname{det}(\boldsymbol{\Sigma})\right)+\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu}) . \\
& \text { Constant w.r.t x } \quad \text { Mahalanobis distance (sigma-norm) }
\end{aligned}
$$

- Maximum of $P(x)$ is equivalent to minimum of $-\ln (P(x))$

1. From state estimation to least square

- Take this into the MAP:

Max: $\begin{aligned} & P\left(\boldsymbol{z}_{j, k} \mid \boldsymbol{x}_{k}, \boldsymbol{y}_{j}\right)= N\left(h\left(\boldsymbol{y}_{j}, \boldsymbol{x}_{k}\right), \boldsymbol{Q}_{k, j}\right) . \\ & \Longrightarrow x_{k}, y_{j}=\operatorname{argmin}\left(\left(z_{k, j}-h\left(y_{j}, x_{k}\right)\right)^{T} Q_{j, k}^{-1}\left(z_{k, j}-h\left(y_{j}, x_{k}\right)\right)\right) \\ & \uparrow \\ & \text { Error or residual of single observation }\end{aligned}$

- We turn a MAP problem into a least square problem

1. From state estimation to least square

- Batch least square
- Original problem

Least square
Define the errors(residuals)

$$
\begin{aligned}
& \boldsymbol{e}_{v, k}=\boldsymbol{x}_{k}-f\left(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k}\right) \\
& \boldsymbol{e}_{y, j, k}=\boldsymbol{z}_{k, j}-h\left(\boldsymbol{x}_{k}, \boldsymbol{y}_{j}\right),
\end{aligned}
$$

$$
x_{M A P}=\operatorname{argmax} P(z \mid x) P(x \mid u)
$$

- Sum of the squared residuals:
\min

$$
J(x)=\sum_{k} e_{v, k}^{T} \boldsymbol{R}_{k}^{-1} e_{v, k}+\sum_{k} \sum_{j} e_{y, k, j}^{T} \boldsymbol{Q}_{k, j}^{-1} e_{y, k, j}
$$

1. From state estimation to least square

- Some notes:

$$
J(x)=\sum_{k} e_{v, k}^{T} \boldsymbol{R}_{k}^{-1} e_{v, k}+\sum_{k} \sum_{j} e_{y, k, j}^{T} \boldsymbol{Q}_{k, j}^{-1} \boldsymbol{e}_{y, k, j} .
$$

- Because of noise, when we take the estimated trajectory and map into the models, they won't fit perfectly
- Then we adjust our estimation to get a better estimation (minimize the error)
- The error distribution is affected by noise distribution (information matrix)
- Structure of the least square problem
- Sum of many squared errors
- The dimension of total state variable maybe high
- But single error item is easy (only related to two states in our case)
- If we use Lie group and Lie algebra, then it's a non-constrained least square

Contents

- From state estimation to least square
- Batch least square
- Application: estimate camera pose by iterative method

2. Batch least square

- How to solve a least square problem?
- Non-linear, discrete time, non-constrained
- Let's start from a simple example
- Consider minimizing a squared error:
- When f is simple, just solve:

$$
\min _{x} \frac{1}{2}\|f(x)\|_{2}^{2} .
$$

$$
x \in \mathbb{R}^{n}
$$

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=0 .
$$

- And we will find the maxima/minima/saddle points

2. Batch least square

- When f is a complicated function:
- $\mathrm{df} / \mathrm{dx}=0$ is hard to solve
- We use iterative methods
- Iterative methods

1. Start from a initial estimation x_{0}

2. At iteration k, we find a incremental Δx_{k} to make $\left\|f\left(x_{k}+\Delta x_{k}\right)\right\|_{2}^{2}$ become smaller
3. If Δx_{k} is small enough, stop (converged)
4. If not, set $x_{k+1}=x_{k}+\Delta x_{k}$ and return to step 2 .

2. Batch least square

- How to find the incremental part?
- By the gradient
- Taylor expansion of the object function:

$$
\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{2}^{2} \approx\|f(\boldsymbol{x})\|_{2}^{2}+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\frac{1}{2} \Delta \boldsymbol{x}^{T} \boldsymbol{H} \Delta \boldsymbol{x} .
$$

- First order methods and second order methods
- First order: (Steepest descent)

$$
\min _{\Delta x}\|f(x)\|_{2}^{2}+J \Delta x \quad \text { Incremental will be: } \quad \Delta x^{*}=-J^{T}(x)
$$

Usually we need a step size

2. Batch least square

- Zig-zag in steepest descent

Other shortcomings

- Slow convergence speed
- Slow when close to the minimum

2. Batch least square

- Second order methods

$$
\|f(\boldsymbol{x}+\Delta \boldsymbol{x})\|_{2}^{2} \approx\|f(\boldsymbol{x})\|_{2}^{2}+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\frac{1}{2} \Delta \boldsymbol{x}^{T} \boldsymbol{H} \Delta \boldsymbol{x}
$$

- Solve an increment to minimize it:

$$
\Delta \boldsymbol{x}^{*}=\arg \min \|f(\boldsymbol{x})\|_{2}^{2}+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\frac{1}{2} \Delta \boldsymbol{x}^{T} \boldsymbol{H} \Delta \boldsymbol{x} .
$$

- Let the derivative to Δx be zero, then we get: $H \Delta x=-J^{T}$.
- This is called Newton's method

2. Batch least square

- Second order method converges more quickly than first order methods
- But the Hessian matrix maybe hard to compute: $\boldsymbol{H} \Delta \boldsymbol{x}=-\boldsymbol{J}^{T}$.
- Can we avoid the Hessian matrix and also keeps second order's convergence speed?
- Gauss-Newton
- Levenberg-Marquardt

2. Batch least square

- Gauss-Newton
- Taylor expansion of $\mathrm{f}(\mathrm{x}): \quad f(\boldsymbol{x}+\Delta \boldsymbol{x}) \approx f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}$.
- Then the squared error becomes:

$$
\begin{aligned}
\frac{1}{2}\|f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}\|^{2} & =\frac{1}{2}(f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x})^{T}(f(\boldsymbol{x})+\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}) \\
& =\frac{1}{2}\left(\|f(\boldsymbol{x})\|_{2}^{2}+2 f(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}+\Delta \boldsymbol{x}^{T} \boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}\right) .
\end{aligned}
$$

- Also let its derivative with Δx be zero:

$$
\begin{aligned}
& 2 \boldsymbol{J}(\boldsymbol{x})^{T} f(\boldsymbol{x})+2 \boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}=\mathbf{0} . \\
& \boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}=-\boldsymbol{J}(\boldsymbol{x})^{T} f(\boldsymbol{x}) . \\
& \downarrow \\
& H
\end{aligned} \quad \downarrow \quad \boldsymbol{H} \Delta \boldsymbol{x}=\boldsymbol{g} .
$$

2. Batch least square

$$
\boldsymbol{J}(\boldsymbol{x})^{T} \boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}=-\boldsymbol{J}(\boldsymbol{x})^{T} f(\boldsymbol{x}) .
$$

- Gauss-Newton use $J(x)^{T} J(x)$ as an approximation of the Hessian
- Therefore avoiding the computation of H in the Newton's method
- But $J(x)^{T} J(x)$ is only semi-positive definite
- H maybe irreversible when $J^{\wedge} T J$ has null space $f(x)$

2. Batch least square

- Levernberg-Marquardt method
- Trust region approach: approximation is only valid in a region
- Evaluate if the approximation is good:

$$
\rho=\frac{f(\boldsymbol{x}+\Delta \boldsymbol{x})-f(\boldsymbol{x})}{\boldsymbol{J}(\boldsymbol{x}) \Delta \boldsymbol{x}} .
$$

- If rho is large, increase the region
- If rho is small, decrease the region
- LM optimization: $\quad \min _{\Delta x_{k}} \frac{1}{2}\left\|f\left(x_{k}\right)+J\left(x_{k}\right) \Delta x_{k}\right\|^{2}$, s.t. $\left\|\Delta x_{k}\right\|^{2} \leq \mu$
- Assume the approximation is only good within a ball

2. Batch least square

- Use Lagrange multipliers:

$$
\begin{aligned}
& \min _{\Delta x_{k}} \frac{1}{2}\left\|f\left(x_{k}\right)+J\left(x_{k}\right) \Delta x_{k}\right\|^{2} \text {, s.t. }\left\|\Delta x_{k}\right\|^{2} \leq \mu \\
& \min \frac{1}{2}\left\|f\left(x_{k}\right)+J\left(x_{k}\right) \Delta x_{k}\right\|^{2}+\frac{\lambda}{2}\|\Delta x\|^{2}
\end{aligned}
$$

- Expand it just like in G-N's case, the incremental will be:

$$
\left(J\left(x_{k}\right)^{T} J\left(x_{k}\right)+\lambda I\right) \Delta x_{k}=g
$$

- This λI increase the semi-positive definite property of the Hessian
- Also balancing the first-order and second-order items

2. Batch least square

- Other methods
- Dog-leg method
- Conjugate gradient method
- Quasi-Newton's method
- Pseudo-Newton's method
- ...
- You can find more in optimization books if you are interested
- In SLAM, we use G-N or L-M to solve camera's motion, pixel's movement, optical-flow, etc.

2. Batch least square

- Problem in the Practical Assignment
- Curve fitting: find best parameters a,b,c from the observation data:

Curve function: $\quad y=\exp \left(a x^{2}+b x+c\right)+w$,

- Error:

$$
e_{i}=y_{i}-\exp \left(a x_{i}^{2}+b x_{i}+c\right)
$$

- Least square problem:

$$
\begin{aligned}
& a, b, c \\
& =\operatorname{argmin} \sum_{i=1}^{N}\left\|y_{i}-\exp \left(a x_{i}^{2}+b x_{i}+c\right)\right\|^{2}
\end{aligned}
$$

2. Batch least square

- You are asked to solve this problem with a hand-written GaussNewton's method and use optimization libraries.
- Libraries:
- Google Ceres Solver http://ceres-solver.org/
- G2O: https://github.com/RainerKuemmerle/g2o
- You can choose one of them to implement your estimation

2. Batch least square

- Google Ceres
- An optimization library for solving least square problems
- Tutorial: http://ceres-solver.org/tutorial.html
- Define your residual class as a functor (overload the () operator)

```
struct ExponentialResidual {
    ExponentialResidual(double x, double y)
        : x_(x), y_(y) {}
    template <typename T>
    bool operator()(const T* const m, const T* const c, T* residual) const {
        residual[0] = T(y_) - exp(m[0] * T(x_) + c[0]);
        return true;
    }
private:
    // Observations for a sample.
    const double x_;
    const double y_;
};
```


2. Batch least square

- Build the optimization problem:

```
double m = 0.0;
double c = 0.0;
Problem problem;
for (int i = 0; i < kNumObservations; ++i) {
    CostFunction* cost_function =
            new AutoDiffCostFunction<ExponentialResidual, 1, 1, 1>(
            new ExponentialResidual(data[2 * i], data[2 * i + 1]));
    problem.AddResidualBlock(cost_function, NULL, &m, &c);
}
```

- With auto-diff, Ceres will compute the Jacobians for you

2. Batch least square

- Finally solve it by calling the Solve() function and get the result summary
- You can set some parameters like number of iterations, stop conditions or the linear solver type.

```
Solver::Options options;
options.max_num_iterations = 25;
options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true;
```

Solver::Summary summary;
Solve(options, \&problem, \&summary);

2. Batch least square

- G2O
- General Graph Optimization
- Need to convert the least square problem into a graph
- Graph Optimization
- State variables are vertices
- Residuals/Errors are edges connecting those vertices
- Edges can be unary/binary/multiple

2. Batch least square

- Use g2o to solve your least square problem
- Define your vertices and edges (or use the built-in vertices and edges in g2o)
- Build the problem by adding vertices and edges into it
- Set the optimization parameters (linear solver type, iterations, etc.)
- Call solve function
- Fetch the results from the graph

2. Batch least square

- Tutorial of g2o
- http://ais.informatik.unifreiburg.de/publications/papers/kuemmerle11icra.pdf
- Doc/ in the github repo: https://github.com/RainerKuemmerle/g2o
- Examples

2. Batch least square

- Summary
- In the batch estimation, we estimate all the status variable given all the measurements and input
- The batch estimation problem can be formulated into a least square problem, after solving it we get a MAP estimation
- The least square problem can be solved by iterative methods like gradient descent, Newton's method, Gauss-Newton or LevernbergMarquardt method
- The least square problem can also be represented by a graph and forms a (factor) graph optimization problem

Contents

- From state estimation to least square
- Batch least square
- Application: estimate camera pose by iterative method

3. Application: estimate camera pose

- Suppose we want to estimate the camera pose
- We have several observations from the projection function

$$
s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]_{i}=K\left(R P_{i}+t\right)=K T P_{i}
$$

- Minimizing the reprojection error:

$$
(R, t)^{*}=T^{*}=\operatorname{argmin} \frac{1}{2} \sum_{i=1}^{N}\left\|u_{i}-\pi\left(R P_{i}+t\right)\right\|_{2}^{2}
$$

- Where $\pi(\cdot)$ is the projection equation (observation model)

3. Application: estimate camera pose

- Linearize the error: $\quad e_{i}(x \oplus \Delta x) \approx e_{i}(x)+J(x) \Delta x$
- Derivative is defined by $\operatorname{SE}(3)$ disturb model:

$$
\begin{aligned}
& \qquad \begin{array}{c}
\frac{\partial e}{\partial T}=\lim _{\delta \xi \rightarrow 0} \frac{e(\delta \xi \oplus T)-e(T)}{\delta \xi} \\
=\lim _{\delta \xi \rightarrow 0} \frac{\frac{1}{Z} K(\delta \xi \oplus T) P-\frac{1}{Z} K T P}{\delta \xi} \\
\text { - Let } P^{\prime}=T P \text { then use chain rule: } \quad \frac{\partial e}{\partial T}=\frac{\partial e}{\partial P^{\prime}} \frac{\partial P^{\prime}}{\partial T}
\end{array}
\end{aligned}
$$

- For P^{\prime} we have:

$$
\left[\begin{array}{l}
s u \\
s v \\
s
\end{array}\right]=\left[\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X^{\prime} \\
Y^{\prime} \\
Z^{\prime}
\end{array}\right] .
$$

$$
\begin{aligned}
& \longrightarrow u=f_{x} \frac{X^{\prime}}{Z^{\prime}}+c_{x}, \quad v=f_{y} \frac{Y^{\prime}}{Z^{\prime}}+c_{y} . \\
& \frac{\partial e}{\partial P^{\prime}}=-\left[\begin{array}{ccc}
\frac{\partial u}{\partial X^{\prime}} & \frac{\partial u}{X^{\prime}} & \frac{\partial u}{\partial Z^{\prime}} \\
\frac{\partial v}{\partial X^{\prime}} & \frac{\partial v}{\partial Y^{\prime}} & \frac{\partial u}{\partial Z^{\prime}}
\end{array}\right]=-\left[\begin{array}{ccc}
\frac{f_{u}}{Z^{\prime}} & 0 & -\frac{f_{X} X^{\prime}}{Z^{\prime}} \\
0 & \frac{f_{u}}{Z^{\prime}} & -\frac{f_{Y^{\prime}}}{Z^{\prime 2}}
\end{array}\right] .
\end{aligned}
$$

3. Application: estimate camera pose

- The second item: $\frac{\partial\left(T P^{\prime}\right)}{\partial T}=\left[\begin{array}{cc}I & -P^{\prime \wedge} \\ 0^{T} & 0^{T}\end{array}\right] \quad$ See Lecture 2.
- Remove the homogeneous part:

$$
\frac{\partial\left(T P^{\prime}\right)}{\partial T}=\left[\begin{array}{ll}
I & -P^{\prime \wedge}
\end{array}\right]
$$

- Put them together:

$$
\frac{\partial e}{\partial T}=-\left[\begin{array}{cccccc}
\frac{f_{x}}{Z^{\prime}} & 0 & -\frac{f_{x} X^{\prime}}{Z^{\prime 2}} & -\frac{f_{x} X^{\prime} Y^{\prime}}{Z^{\prime 2}} & f_{x}+\frac{f_{x} X^{2}}{Z^{\prime 2}} & -\frac{f_{x} Y^{\prime}}{Z^{\prime}} \\
0 & \frac{f_{y}}{Z^{\prime}} & -\frac{f_{y} Y^{\prime}}{Z^{\prime 2}} & -f_{y}-\frac{f_{y} Y^{\prime 2}}{Z^{\prime 2}} & \frac{f_{y} X^{\prime} Y^{\prime}}{Z^{\prime 2}} & \frac{f_{y} X^{\prime}}{Z^{\prime}}
\end{array}\right]
$$

3. Application: estimate camera pose

- If we want to take the derivative of Point P

$$
\begin{gathered}
s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]_{i}=K\left(R P_{i}+t\right)=K T P_{i} \\
\frac{\partial e}{\partial P}=\frac{\partial e}{\partial P^{\prime}} \frac{\partial P^{\prime}}{\partial P}=-\left[\begin{array}{ccc}
f_{x} / Z^{\prime} & 0 & -f_{x} X^{\prime} / Z^{\prime 2} \\
0 & f_{y} / Z^{\prime} & -f_{y} Y^{\prime} / Z^{\prime 2}
\end{array}\right] R
\end{gathered}
$$

- P is not relevant to translation t

3. Application: estimate camera pose

- We can also compute these Jacobians in $\mathrm{SO}(3)$
- With Jacobian in manifold it will be easy to perform Gauss-Newton iterations to solve the camera's motion iteratively

Any Questions?

