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1. From state estimation to least square

▪ Recall the motion model and observation model

▪ How to estimate the unknown variables given the observation data?
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1. Batch state estimation

▪ Batch approach

▪ Give all the measurements

▪ To estimate all the state variables

▪ State variables:

▪ Our purpose:

▪ Bayes’ Rule:
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Observation and input:

𝑢 = 𝑢1, 𝑢2, ⋯ , 𝑧 = 𝑧𝑘,𝑗

𝑝 𝑥|𝑢, 𝑧 =
𝑃 𝑧|𝑥, 𝑢 𝑝 𝑥|𝑢

𝑃 𝑧|𝑢

Posteriori

Likehood Priori



1. From state estimation to least square

▪ It is usually hard to write out the full distribution of Bayes’ formula, 
but we can:

▪ MAP: Maximum A Posteriori

▪ “In which state it is most like to produce such measurements”
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𝑥𝑀𝐴𝑃 = argmax
𝑥
𝑃 𝑥|𝑢, 𝑧 = argmax

𝑃 𝑧|𝑥, 𝑢 𝑃 𝑥|𝑢

ሻ𝑃(𝑧|𝑢
ሻ= argmax𝑃 𝑧|𝑥 𝑃(𝑥|𝑢

Drop u because z is not relevant with u

Drop denominator because it 
is not relevant with x



1. From state estimation to least square

▪ From MAP to batch least square

▪ We assume the noise variables are independent, so that the joint pdf 
can be factorized:

▪ Let’s consider a single observation:

▪ Affected by white Gaussian noise:

▪ The observation model gives us a conditional pdf:

▪ Then how to compute the MAP of x,y given z?
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𝑃 𝑧|𝑥 =ෑ

𝑘=0

𝐾

𝑃 𝑧𝑘|𝑥𝑘

𝑣𝑘,𝑗~𝑁 0, 𝑄𝑘,𝑗



1. From state estimation to least square

▪ Gaussian distribution (matrix form)

▪ Take minus logarithm at both sides:

▪ Maximum of P(x) is equivalent to minimum of –ln(P(x))
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Constant w.r.t x Mahalanobis distance (sigma-norm)



1. From state estimation to least square

▪ Take this into the MAP:

▪ We turn a MAP problem into a least square problem
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𝑥𝑘 , 𝑦𝑗 = argmin 𝑧𝑘,𝑗 − ℎ 𝑦𝑗 , 𝑥𝑘
𝑇
𝑄𝑗,𝑘
−1 𝑧𝑘,𝑗 − ℎ 𝑦𝑗 , 𝑥𝑘

Max:

Error or residual of single observation

Information matrix



1. From state estimation to least square

▪ Batch least square

▪ Original problem 

▪ Sum of the squared residuals:
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𝑥𝑀𝐴𝑃 = argmax𝑃 𝑧|𝑥 𝑃 𝑥|𝑢

Least square
Define the errors(residuals)

min



1. From state estimation to least square

▪ Some notes:

▪ Because of noise, when we take the estimated trajectory and map into 
the models, they won’t fit perfectly

▪ Then we adjust our estimation to get a better estimation (minimize the 
error)

▪ The error distribution is affected by noise distribution (information 
matrix)

▪ Structure of the least square problem

▪ Sum of many squared errors

▪ The dimension of total state variable maybe high

▪ But single error item is easy (only related to two states in our case)

▪ If we use Lie group and Lie algebra, then it’s a non-constrained least 
square
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2. Batch least square

▪ How to solve a least square problem?

▪ Non-linear, discrete time, non-constrained

▪ Let’s start from a simple example

▪ Consider minimizing a squared error:

▪ When f is simple, just solve: 

▪ And we will find the maxima/minima/saddle points

Dr. Jörg Stückler, Computer Vision Group, TUM13



2. Batch least square

▪ When f is a complicated function:

▪ df/dx=0 is hard to solve

▪ We use iterative methods

▪ Iterative methods

1. Start from a initial estimation

2. At iteration     , we find a incremental         to make                               
become smaller

3. If        is small enough, stop (converged)

4. If not, set                              and return to step 2.
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𝑥0

𝑘 𝛥𝑥𝑘 ‖𝑓 𝑥𝑘 + 𝛥𝑥𝑘 ‖2
2

𝛥𝑥𝑘

𝑥𝑘+1 = 𝑥𝑘 + 𝛥𝑥𝑘



2. Batch least square

▪ How to find the incremental part?

▪ By the gradient

▪ Taylor expansion of the object function:

▪ First order methods and second order methods

▪ First order: (Steepest descent)
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Jacobian Hessian

min
𝛥𝑥

‖𝑓 𝑥 ‖2
2 + 𝐽𝛥𝑥 Incremental will be:

Usually we need a step size



2. Batch least square

▪ Zig-zag in steepest descent
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Other shortcomings
• Slow convergence speed
• Slow when close to the minimum



2. Batch least square

▪ Second order methods

▪ Solve an increment to minimize it:

▪ Let the derivative to       be zero, then we get:   

▪ This is called Newton’s method
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𝛥𝑥



2. Batch least square

▪ Second order method converges more quickly than first order 
methods

▪ But the Hessian matrix maybe hard to compute:

▪ Can we avoid the Hessian matrix and also keeps second order’s 
convergence speed?

▪ Gauss-Newton

▪ Levenberg-Marquardt
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2. Batch least square

▪ Gauss-Newton

▪ Taylor expansion of f(x):  

▪ Then the squared error becomes:

▪ Also let its derivative with        be zero:
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𝛥𝑥

𝐻 𝑔



2. Batch least square

▪ Gauss-Newton use                   as an approximation of the Hessian

▪ Therefore avoiding the computation of H in the Newton’s method

▪ But                  is only semi-positive definite

▪ H maybe irreversible when J^T J has null space
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𝐽 𝑥 𝑇𝐽 𝑥

𝐽 𝑥 𝑇𝐽 𝑥



2. Batch least square

▪ Levernberg-Marquardt method

▪ Trust region approach: approximation is only valid in a region

▪ Evaluate if the approximation is good:

▪ If rho is large, increase the region

▪ If rho is small, decrease the region

▪ LM optimization:

▪ Assume the approximation is only good within a ball 
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Real descent/approx. descent

min
𝛥𝑥𝑘

1

2
‖𝑓 𝑥𝑘 + 𝐽 𝑥𝑘 𝛥𝑥𝑘‖

2, 𝑠. 𝑡. ‖𝛥𝑥𝑘‖
2 ≤ 𝜇



2. Batch least square

▪ Use Lagrange multipliers:

▪ Expand it just like in G-N’s case, the incremental will be:

▪ This       increase the semi-positive definite property of the Hessian

▪ Also balancing the first-order and second-order items
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min
𝛥𝑥𝑘

1

2
‖𝑓 𝑥𝑘 + 𝐽 𝑥𝑘 𝛥𝑥𝑘‖

2, 𝑠. 𝑡. ‖𝛥𝑥𝑘‖
2 ≤ 𝜇

min
1

2
‖𝑓 𝑥𝑘 + 𝐽 𝑥𝑘 𝛥𝑥𝑘‖

2 +
𝜆

2
‖𝛥𝑥‖2

𝐽 𝑥𝑘
𝑇𝐽 𝑥𝑘 + 𝜆𝐼 𝛥𝑥𝑘 = 𝑔

𝜆𝐼



2. Batch least square

▪ Other methods

▪ Dog-leg method

▪ Conjugate gradient method

▪ Quasi-Newton’s method

▪ Pseudo-Newton’s method

▪ …

▪ You can find more in optimization books if you are interested

▪ In SLAM, we use G-N or L-M to solve camera’s motion, pixel’s 
movement, optical-flow, etc.
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2. Batch least square

▪ Problem in the Practical Assignment

▪ Curve fitting: find best parameters a,b,c from the observation data:

▪ Error:

▪ Least square problem:
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Curve function:

𝑒𝑖 = 𝑦𝑖 − exp 𝑎𝑥𝑖
2 + 𝑏𝑥𝑖 + 𝑐

𝑎, 𝑏, 𝑐

= argmin

𝑖=1

𝑁

‖𝑦𝑖 − exp 𝑎𝑥𝑖
2 + 𝑏𝑥𝑖 + 𝑐 ‖2



2. Batch least square

▪ You are asked to solve this problem with a hand-written Gauss-
Newton’s method and use optimization libraries.

▪ Libraries:

▪ Google Ceres Solver http://ceres-solver.org/

▪ G2O: https://github.com/RainerKuemmerle/g2o

▪ You can choose one of them to implement your estimation
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http://ceres-solver.org/
https://github.com/RainerKuemmerle/g2o


2. Batch least square

▪ Google Ceres

▪ An optimization library for solving least square problems

▪ Tutorial: http://ceres-solver.org/tutorial.html

▪ Define your residual class as a functor (overload the () operator)
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http://ceres-solver.org/tutorial.html


2. Batch least square

▪ Build the optimization problem:

▪ With auto-diff, Ceres will compute the Jacobians for you
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2. Batch least square

▪ Finally solve it by calling the Solve() function and get the result 
summary

▪ You can set some parameters like number of iterations, stop 
conditions or the linear solver type.
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2. Batch least square

▪ G2O

▪ General Graph Optimization

▪ Need to convert the least square problem into a graph

▪ Graph Optimization

▪ State variables are vertices

▪ Residuals/Errors are edges connecting those vertices

▪ Edges can be unary/binary/multiple
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2. Batch least square

▪ Use g2o to solve your least square problem

▪ Define your vertices and edges (or use the built-in vertices and edges in 
g2o)

▪ Build the problem by adding vertices and edges into it

▪ Set the optimization parameters (linear solver type, iterations, etc.) 

▪ Call solve function

▪ Fetch the results from the graph

Dr. Jörg Stückler, Computer Vision Group, TUM30



2. Batch least square

▪ Tutorial of g2o

▪ http://ais.informatik.uni-
freiburg.de/publications/papers/kuemmerle11icra.pdf

▪ Doc/ in the github repo: https://github.com/RainerKuemmerle/g2o

▪ Examples
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2. Batch least square

▪ Summary

▪ In the batch estimation, we estimate all the status variable given all the 
measurements and input

▪ The batch estimation problem can be formulated into a least square 
problem, after solving it we get a MAP estimation

▪ The least square problem can be solved by iterative methods like 
gradient descent, Newton’s method, Gauss-Newton or Levernberg-
Marquardt method

▪ The least square problem can also be represented by a graph and forms 
a (factor) graph optimization problem
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3. Application: estimate camera pose

▪ Suppose we want to estimate the camera pose

▪ We have several observations from the projection function

▪ Minimizing the reprojection error:

▪ Where          is the projection equation (observation model)
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𝑠
𝑢
𝑣
1 𝑖

= 𝐾 𝑅𝑃𝑖 + 𝑡 = 𝐾𝑇𝑃𝑖

𝑅, 𝑡 ∗ = 𝑇∗ = argmin
1

2


𝑖=1

𝑁

‖𝑢𝑖 − 𝜋 𝑅𝑃𝑖 + 𝑡 ‖2
2

𝜋 ⋅



3. Application: estimate camera pose

▪ Linearize the error:

▪ Derivative is defined by SE(3) disturb model:

▪ Let then use chain rule:

▪ For we have:
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𝑒𝑖 𝑥 ⊕ 𝛥𝑥 ≈ 𝑒𝑖 𝑥 + 𝐽 𝑥 𝛥𝑥

∂𝑒

∂𝑇
= lim

𝛿𝜉→0

𝑒 𝛿𝜉 ⊕ 𝑇 − 𝑒 𝑇

𝛿𝜉

= lim
𝛿𝜉→0

1
𝑍
𝐾 𝛿𝜉 ⊕ 𝑇 𝑃 −

1
𝑍
𝐾𝑇𝑃

𝛿𝜉

𝑃′ = 𝑇𝑃
∂𝑒

∂𝑇
=

∂𝑒

∂𝑃′

∂𝑃′

∂𝑇
𝑃′



3. Application: estimate camera pose

▪ The second item:

▪ Remove the homogeneous part:

▪ Put them together:
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ሻ∂(𝑇𝑃′

∂𝑇
= 𝐼 −𝑃′∧

0𝑇 0𝑇
See Lecture 2.

ሻ∂(𝑇𝑃′

∂𝑇
= 𝐼 −𝑃′∧

∂𝑒

∂𝑇



3. Application: estimate camera pose

▪ If we want to take the derivative of Point P

▪ P is not relevant to translation t
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𝑠
𝑢
𝑣
1 𝑖

= 𝐾 𝑅𝑃𝑖 + 𝑡 = 𝐾𝑇𝑃𝑖

∂𝑒

∂𝑃
=

∂𝑒

∂𝑃′

∂𝑃′

∂𝑃
= −

Τ𝑓𝑥 𝑍 ′ 0 −𝑓𝑥𝑋 Τ′ 𝑍 ′2

0 Τ𝑓𝑦 𝑍 ′ −𝑓𝑦𝑌 Τ′ 𝑍 ′2
𝑅



3. Application: estimate camera pose

▪ We can also compute these Jacobians in SO(3)

▪ With Jacobian in manifold it will be easy to perform Gauss-Newton 
iterations to solve the camera’s motion iteratively
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Any Questions?


