

Practical Course: Vision-based Navigation SS 2018

Lecture 4. Visual Odometry

Dr. Jörg Stückler, Dr. Xiang Gao Vladyslav Usenko, Prof. Dr. Daniel Cremers

Contents

- Feature extraction and matching
- Optical Flow
- Pose estimation approaches
- Direct method

Contents

- Feature extraction and matching
- Optical Flow
- Pose estimation approaches
- Direct method

- Visual odometry steps
 - Find the corresponding points in the images
 - Estimate camera motion
 - Expand the map if needed

- We estimation camera pose by the observed landmarks
 - Landmarks: fixed in 3D space and can be observed in the image
 - Distinctive: landmarks should be easy to distinguish
- Image features are used as landmarks in visual SLAM
- Image features
 - Repeatable
 - Distinctive
 - Efficient
 - Local

- Feature
 - Keypoint: position, size, angle, score, etc.
 - Descriptor: encode the surrounding image information
- Examples:
 - SIFT
 - SURF
 - ORB
 - etc (see OpenCV's features2d module)

features2d. 2D Features Framev

- Feature Detection and Description
 - FAST
 - MSER
 - MSER::MSER
 - MSER::operator()
 - o ORB
 - ORB::ORB
 - ORB::operator()
 - BRISK
 - BRISK::BRISK
 - BRISK::BRISK
 - BRISK::operator()
 - FREAK
 - FREAK::FREAK
 - FREAK::selectPairs
- Common Interfaces of Feature Detectors
 - KeyPoint
 - KeyPoint::KeyPoint
 - FeatureDetector
 - FeatureDetector::detect
 - FeatureDetector::create
 - FastFeatureDetector
 - GoodFeaturesToTrackDetector
 - MserFeatureDetector
 - StarFeatureDetector
 - DenseFeatureDetector
 - SimpleBlobDetector
 - GridAdaptedFeatureDetector
 - PyramidAdaptedFeatureDetector
 - DynamicAdaptedFeatureDetector
 - DynamicAdaptedFeatureDetector::DynamicAdap

- Take ORB as an example
- ORB
 - Keypoint: Oriented FAST
 - Descriptor: Steer BRIEF

- FAST keypoint
 - P is a corner if we have continuous n points whose image intensity is larger/smaller than p over a threshold
 - Called FAST-n, e.g., FAST-12, FAST-10, FAST-9 ...

- Oriented FAST
 - Compute an angle in the FAST

In a image patch B, define its moment as:

$$m_{pq} = \sum_{x,y \in B} x^p y^q I(x,y), \{p,q\} \in \{0,1\}$$

- Find the centroid of the patch: $\left(\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}\right)$
- And compute the angle: $\theta = \arctan(m_{01}/m_{10})$

- BRIEF descriptor
 - Binary Robust Independent Elementary Features (BRIEF)
 - BRIEF-n: Compare n pairs of pixels around the keypoint
 - The pairs are chosen randomly or with a certain pattern

- ORB use steer (rotated) BRIEF
 - Rotate the BRIEF pattern according to the precomputed angle

- Feature matching
 - Compute the data association according the descriptor distance
 - Brute-force matching: compare each pairs of descriptors
 - FLANN: Fast approximate nearest neighbor
 - For binary descriptors like BRIEF and ORB, use Hamming distance:
 - Hamming(x,y) = number of different coefficients

Contents

- Feature extraction and matching
- Optical Flow
- Pose estimation approaches
- Direct method

- Optical Flow
 - Estimate the motion of pixels in continuous images
 - Sparse vs Dense Flow
 - Sparse: Lucas-Kanade (LK) flow
 - Dense: Horn-Schunck (HS) flow
 - Can be used to find corresponding pixels in images

- How to estimate optical flow?
- Assume at time t we have a pixel at x,y, then its intensity is: I(x, y, t).
- At t+dt, it moves to x+dx, y+dy, and the intensity is: I(x + dx, y + dy, t + dt)
- Brightness constancy assumption:

$$\boldsymbol{I}(x + \mathrm{d}x, y + \mathrm{d}y, t + \mathrm{d}t) = \boldsymbol{I}(x, y, t).$$

 Note this is really a strong and ideal assumption since brightness can be changed by highlight/shadow/occlusion/material/exposure and will not hold any more

With brightness constancy, we expand the assumption:

$$\boldsymbol{I}(x+\mathrm{d}x,y+\mathrm{d}y,t+\mathrm{d}t)=\boldsymbol{I}(x,y,t).$$

$$\mathbf{I}(x + dx, y + dy, t + dt) \approx \mathbf{I}(x, y, t) + \frac{\partial \mathbf{I}}{\partial x} dx + \frac{\partial \mathbf{I}}{\partial y} dy + \frac{\partial \mathbf{I}}{\partial t} dt.$$

And obtain:

Gradient with time

$$\frac{\partial \mathbf{I}}{\partial x} dx + \frac{\partial \mathbf{I}}{\partial y} dy + \frac{\partial \mathbf{I}}{\partial t} dt = 0. \qquad \qquad \frac{\partial \mathbf{I}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{I}}{\partial y} \frac{dy}{dt} = -\frac{\partial \mathbf{I}}{\partial t}.$$

Gradient on x-axis

Gradient on y-axis

Our object: compute dx/dt and dy/dt

$$\frac{\partial \mathbf{I}}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial \mathbf{I}}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{\partial \mathbf{I}}{\partial t}.$$

- However it is a underdetermined linear equation
 - 2 unknowns and 1 equation
 - We need extra constraints: assume brightness constancy in a small window of $w \times w$ patch

$$\left[\begin{array}{cc} \boldsymbol{I}_x & \boldsymbol{I}_y \end{array}\right]_k \left[\begin{array}{c} u \\ v \end{array}\right] = -\boldsymbol{I}_{tk}, \quad k = 1, \dots, w^2.$$

Then we get an overdetermined equation and solve it by linear least square (or Moore-Penrose inverse of the coefficient matrix:

$$oldsymbol{A} = \left[egin{array}{c} \left[oldsymbol{I}_x, oldsymbol{I}_y
ight]_1 \ dots \ \left[oldsymbol{I}_x, oldsymbol{I}_y
ight]_k \end{array}
ight], oldsymbol{b} = \left[egin{array}{c} oldsymbol{I}_{t1} \ dots \ oldsymbol{I}_{tk} \end{array}
ight]. \qquad \qquad \left[egin{array}{c} u \ v \end{array}
ight]^* = -ig(oldsymbol{A}^{\mathrm{T}}oldsymbol{A}^{\mathrm{T}}oldsymbol{b}.$$

$$\frac{\partial \mathbf{I}}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial \mathbf{I}}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{\partial \mathbf{I}}{\partial t}.$$

- The solution of LK flow depends on the image gradient
 - Which is not smooth and can have dramatic changes
 - Multi-level optical flow: from coarse to fine

Coarse-to-fine optical flow estimation

- Some notes on LK-flow
 - We can also use non-linear optimization tools (Gauss-Newton, L-M, etc.) to solve the optical flow iteratively
 - Optical flow can be used to track the motion of the corners in videos
 - After obtaining the points, motion estimation step will be same as feature methods
 - Need to wrap the patches if the motion is not pure translation

Contents

- Feature extraction and matching
- Optical Flow
- Pose estimation approaches
- Direct method

- After obtaining the corresponding feature points we can estimate the camera motion
- In practice we have several cases:
 - 2D-2D: if we only have two images
 - 3D-2D: if we have a pre-built scene and an image
 - 3D-3D: if we have two RGB-D image pairs or if we want to align a model to a scene
- 2D-2D: epipolar geometry
- 3D-2D: Perspective-n-Points (PnP)
- 3D-3D: iterative closest points (ICP)

- 2D-2D
 - 3D point P (unknown)
 - Projections: p1, p2
 - Images I1, I2
 - Transform: T12

- Epipoles: projection of $O_1, O_2 \rightarrow e_1, e_2$
- Epipolar line: O_1P projected in image 2 e_2p_2 and vise vesa
- Our purpose: estimate T12(T21) given p1 and p2

- Epipolar geometry
- Assume the point P at $P = [X, Y, Z]^T$.
- Projection model:

$$s_1 p_1 = KP$$
, $s_2 p_2 = K(RP + t)$.

Use unit plane homogenous coordinates (to remove the intrinsics):

$$x_1=K^{-1}p_1,\quad x_2=K^{-1}p_2.$$

$$x_2 = Rx_1 + t.$$

- Left multiplied by t^{\wedge} : $t^{\wedge}x_2 = t^{\wedge}Rx_1$.
- Then left multiplied by x_2^T : $x_2^T t^{\wedge} x_2 = x_2^T t^{\wedge} R x_1$.
- This should be zero: $x_2^T t^{\wedge} R x_1 = 0$.

Epipolar constraints:

$$x_2^T t^{\wedge} R x_1 = 0.$$

or
$$p_2^T K^{-T} t^{\wedge} R K^{-1} p_1 = 0.$$

- Which meas O1, O2 and P are in the same plane
- Define:

$$E = t^{\wedge} R$$
, $F = K^{-T} E K^{-1}$, $x_2^T E x_1 = p_2^T F p_1 = 0$.

$$x_2^T E x_1 = p_2^T F p_1 = 0.$$

Essential/Fundamental matrix

- Estimate the pose in two steps:
 - Estimate Essential/Fundamental matrix
 - Decompose the E/F to get R,t

- Estimate essential matrix (eight-point algorithm)
 - Treat E as an ordinary matrix, then one point gives us:

$$\begin{pmatrix} u_1, v_1, 1 \end{pmatrix} \begin{pmatrix} e_1 & e_2 & e_3 \\ e_4 & e_5 & e_6 \\ e_7 & e_8 & e_9 \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ 1 \end{pmatrix} = 0.$$

- Rewrite it as: $[u_1u_2, u_1v_2, u_1, v_1u_2, v_1v_2, u_2, v_2, 1] \cdot e = 0.$
- Then we need at least eight points to solve this linear equation (because E is homogenous and can be multiplied by any non-zero factor)

$$\begin{pmatrix} u_1^1u_2^1 & u_1^1v_2^1 & u_1^1 & v_1^1u_2^1 & v_1^1v_2^1 & v_1^1 & u_2^1 & v_2^1 & 1 \\ u_1^2u_2^2 & u_1^2v_2^2 & u_1^2 & v_1^2u_2^2 & v_1^2v_2^2 & v_1^2 & u_2^2 & v_2^2 & 1 \\ \vdots & \vdots \\ u_1^8u_2^8 & u_1^8v_2^8 & u_1^8 & v_1^8u_2^8 & v_1^8v_2^8 & v_1^8 & u_2^8 & v_2^8 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6 \\ e_7 \\ e_8 \\ e_9 \end{pmatrix}$$

From Essential to R,t: use the SVD method

$$egin{aligned} egin{aligned} oldsymbol{t}_1^\wedge &= oldsymbol{U} oldsymbol{R}_Z(rac{\pi}{2}) oldsymbol{\Sigma} oldsymbol{U}^T, & oldsymbol{R}_1 &= oldsymbol{U} oldsymbol{R}_Z^T(rac{\pi}{2}) oldsymbol{V}^T \ oldsymbol{t}_2^\wedge &= oldsymbol{U} oldsymbol{R}_Z(-rac{\pi}{2}) oldsymbol{\Sigma} oldsymbol{U}^T, & oldsymbol{R}_2 &= oldsymbol{U} oldsymbol{R}_Z^T(-rac{\pi}{2}) oldsymbol{V}^T. \end{aligned}$$

 Four possible solutions but only one of them has positive depth values

- During the SVD we can also:
 - Take $E = U \operatorname{diag}(\frac{\sigma_1 + \sigma_2}{2}, \frac{\sigma_1 + \sigma_2}{2}, 0)V^T$. since essential matrix requires its singular value as $\sigma, \sigma, 0$
- And because DoF of E is only five (3 rot+3 trans -1 scale), we can also solve it using only 5 points
 - Called five point algorithm [1]
- More than eight points:
 - RANSAC or least square

[1] Nistér D. An efficient solution to the five-point relative pose problem[J]. IEEE transactions on pattern analysis and machine intelligence, 2004, 26(6): 756-770.

- Eight-point algorithm can be used in the initialization step of monocular SLAM
- Some notes on Essential matrix
 - Scale is undetermined: we can normalize t or the mean depth of the scene
 - Pure rotation problem: when t=0 and t^R should be zero, and E cannot be decomposed
 - When the eight points are on the same plane, the problem will be degenerated and we will use Homography matrix to solve the initialization problem

- 3D-2D: Perspective-n-Points
- Given n 3D points and their projections, estimate the camera pose

27

- Methods: linear algebra or nonlinear optimization
- Linear algebra:
 - DLT
 - P₃P
 - EPnP/UPnP/etc.
 - You can just call cv::SolvePnP
 - The methods can be chosen by giving different parameters
- Nonlinear:
 - Minimizing the reprojection error
 - Shown in ex3.3

- 3D-3D: ICP
- Given two pairs of 3D points, estimate the rotation and translation
- The points can be pre-matched or not matched
- If we have the matches, then the problem has analytical solution, otherwise we don't
- Assume we have two point sets: $P = \{p_1, \dots, p_n\}, P' = \{p'_1, \dots, p'_n\},$
- And the motion is: $\forall i, p_i = Rp_i' + t$.
- Define the error: $e_i = p_i (Rp_i' + t)$.
- And the least square will be:

$$\min_{\mathbf{R}, \mathbf{t}} J = \frac{1}{2} \sum_{i=1}^{n} \| (\mathbf{p}_i - (\mathbf{R} \mathbf{p}_i' + \mathbf{t})) \|_2^2.$$

- Some derivation
- Define the centroids: $p = \frac{1}{n} \sum_{i=1}^{n} (p_i), \quad p' = \frac{1}{n} \sum_{i=1}^{n} (p'_i).$
- And rewrite the objective function:

$$\begin{split} \frac{1}{2} \sum_{i=1}^{n} \| \boldsymbol{p}_{i} - (\boldsymbol{R} \boldsymbol{p}_{i}{}' + \boldsymbol{t}) \|^{2} &= \frac{1}{2} \sum_{i=1}^{n} \| \boldsymbol{p}_{i} - \boldsymbol{R} \boldsymbol{p}_{i}{}' - \boldsymbol{t} - \boldsymbol{p} + \boldsymbol{R} \boldsymbol{p}{}' + \boldsymbol{p} - \boldsymbol{R} \boldsymbol{p}{}' \|^{2} \\ &= \frac{1}{2} \sum_{i=1}^{n} \| (\boldsymbol{p}_{i} - \boldsymbol{p} - \boldsymbol{R} (\boldsymbol{p}_{i}{}' - \boldsymbol{p}{}')) + (\boldsymbol{p} - \boldsymbol{R} \boldsymbol{p}{}' - \boldsymbol{t}) \|^{2} \\ &= \frac{1}{2} \sum_{i=1}^{n} (\| \boldsymbol{p}_{i} - \boldsymbol{p} - \boldsymbol{R} (\boldsymbol{p}_{i}{}' - \boldsymbol{p}{}') \|^{2} + \| \boldsymbol{p} - \boldsymbol{R} \boldsymbol{p}{}' - \boldsymbol{t} \|^{2} + \\ &= \frac{1}{2} (\boldsymbol{p}_{i} - \boldsymbol{p} - \boldsymbol{R} (\boldsymbol{p}_{i}{}' - \boldsymbol{p}{}'))^{T} (\boldsymbol{p} - \boldsymbol{R} \boldsymbol{p}{}' - \boldsymbol{t}) . \end{split}$$

This part is zero if you write it out

So the objective function is simplified as:

$$\min_{\mathbf{R}, \mathbf{t}} J = \frac{1}{2} \sum_{i=1}^{n} \| \mathbf{p}_{i} - \mathbf{p} - \mathbf{R} (\mathbf{p}_{i}' - \mathbf{p}') \|^{2} + \| \mathbf{p} - \mathbf{R} \mathbf{p}' - \mathbf{t} \|^{2}.$$

- We can just minimize the first part, and choose a t to set the second part to zero
- How to solve the first part?
- lacksquare Remove the centroid: $oldsymbol{q}_i = oldsymbol{p}_i oldsymbol{p}, \quad oldsymbol{q}_i' = oldsymbol{p}_i' oldsymbol{p}'.$
- The problem becomes:

$$R^* = \arg\min_{R} \frac{1}{2} \sum_{i=1}^{n} \|q_i - Rq_i'\|^2.$$

Some derivation:

$$\frac{1}{2}\sum_{i=1}^{n}\left\|\boldsymbol{q}_{i}-\boldsymbol{R}\boldsymbol{q}_{i}'\right\|^{2}=\frac{1}{2}\sum_{i=1}^{n}\boldsymbol{q}_{i}^{\mathrm{T}}\boldsymbol{q}_{i}+\boldsymbol{q}_{i}'^{\mathrm{T}}\boldsymbol{R}^{\mathrm{T}}\boldsymbol{R}\boldsymbol{q}_{i}'-2\boldsymbol{q}_{i}^{\mathrm{T}}\boldsymbol{R}\boldsymbol{q}_{i}'.$$

It's only related to the last part:

$$\sum_{i=1}^n -oldsymbol{q}_i^{ ext{T}} oldsymbol{R} oldsymbol{q}_i' = \sum_{i=1}^n - ext{tr}\left(oldsymbol{R} oldsymbol{q}_i' oldsymbol{q}_i^{ ext{T}}
ight) = - ext{tr}\left(oldsymbol{R} \sum_{i=1}^n oldsymbol{q}_i' oldsymbol{q}_i^{ ext{T}}
ight).$$

Solve it by SVD:

$$oldsymbol{W} = \sum_{i=1}^n q_i q_i^{\prime ext{T}}. \qquad oldsymbol{W} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^{ ext{T}}. \qquad oldsymbol{R} = oldsymbol{U} oldsymbol{V}^{ ext{T}}.$$

- It can be proven that if we find a solution, then this solution is the global minimal
- Otherwise, in some special degenerated cases, we cannot find a solution
- If we don't have matches, then assume the closes points are matches and solve this ICP iteratively
- Also, note in the RGB-D case, you can use ICP and PnP separately or put them together into a Bundle Adjustment

- Triangulation
- Given the motion and the pixels, estimate the 3D point position
- From geometry we know: $s_1x_1 = s_2Rx_2 + t$.
- We can either solve s1 or s2, take s2 as an example
- Left multiply by x_1^{\wedge} :

$$s_1 x_1^{\wedge} x_1 = 0 = s_2 x_1^{\wedge} R x_2 + x_1^{\wedge} t.$$

- Overdetermined linear equation
- We can also solve s1, s2 together:

$$[-Rx_2, x_1] \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} = t$$

Summary

- We can get point pairs by feature matching or optical flow
- Estimate the pose in some cases:
 - 2D-2D: estimate the essential/fundamental/Homography matrix and then solve R,t from them
 - 3D-2D: PnP, linear and non-linear method
 - 3D-3D: ICP, also linear (SVD) method or nonlinear method

34

Contents

- Feature extraction and matching
- Optical Flow
- Pose estimation approaches
- Direct method

- Optical flow can estimate pixel's motion, but
 - Without considering the camera's projection model
- Direct method: put them together in an optimization problem

- Derivation of direct method
 - Assume we have two image and the motion is unknown (but with a initial guess)
 - We have a pixel at image 1, and know its depth
 - Then we can compute the projection using the initial guess of transform

$$s_1 p_1 = KP$$

$$s_2 p_2 = K(RP + t)$$

- Brightness constancy assumption: $I_1(p_1) = I_2(p_2)$
- Brightness error: $e = I_1(p_1) I_2(p_2)$
- Motion estimation by least square:

$$\min_{T} J(T) = \sum_{i=1}^{N} e_i^T e_i$$

Jacobians by disturb model in SE(3)

$$e(\delta T \oplus T) = I_1(p_1) - I_2\left(\frac{1}{Z_2}K\exp(\delta\xi^{\wedge})TP\right)$$

$$\approx I_1(p_1) - I_2\left(\frac{1}{Z_2}K(1 + \delta\xi^{\wedge})TP\right)$$

$$= I_1(p_1) - I_2\left(p_2 + \frac{1}{Z_2}K\delta\xi^{\wedge}TP\right)$$

Then:

$$e(\delta T \oplus T) = I_1(p_1) - I_2(p_2 + u)$$

$$\approx I_1(p_1) - I_2(p_2) - \frac{\partial I_2}{\partial u} \frac{\partial u}{\partial q} \frac{\partial q}{\partial \delta \xi} \delta \xi$$

$$= e - \frac{\partial I_2}{\partial u} \frac{\partial u}{\partial q} \frac{\partial q}{\partial \delta \xi} \delta \xi$$

Define:

$$q = \delta \xi^{\wedge} TP$$
, $u = \frac{1}{Z_2} Kq$

- So Jacobian has three parts:
 - First $\frac{\partial I_2}{\partial u}$ is the image gradients in the second image
 - And the second the third part is same as geometric reprojection error:

$$\frac{\partial \boldsymbol{u}}{\partial \delta \boldsymbol{\xi}} = \begin{bmatrix} \frac{f_x}{Z} & 0 & -\frac{f_x X}{Z^2} & -\frac{f_x X Y}{Z^2} & f_x + \frac{f_x X^2}{Z^2} & -\frac{f_x Y}{Z} \\ 0 & \frac{f_y}{Z} & -\frac{f_y Y}{Z^2} & -f_y - \frac{f_y Y^2}{Z^2} & \frac{f_y X Y}{Z^2} & \frac{f_y X}{Z} \end{bmatrix}.$$

So the overall Jacobian will be:

$$oldsymbol{J} = -rac{\partial oldsymbol{I}_2}{\partial oldsymbol{u}}rac{\partial oldsymbol{u}}{\partial \delta oldsymbol{\xi}}.$$

 So we need to choose points that have non-zero gradients, otherwise they won't contribute to the pose estimation

- Some notes on direct method
 - We need to know the depth in the first image (or the reference image),
 which can be obtained from an RGB-D camera or pre-built structures
 - Don't need explicit matched points, what we only need is image gradients (thus we can choose edges and smooth areas)
 - Are able to build dense or semi-dense maps
 - Can be also extended to multi-level and lead to a coarse-to-fine direct method

- Direct method is also affected by image gradients
 - We usually can not control or predict the image data
 - So if the motion is too large, we can not guarantee the cost function is always decreasing during the path to the correct point
 - So direct method is only suitable for smooth motion (or high speed camera)

Any Questions?