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1. Feature Extraction and Matching

= Visual odometry steps
= Find the corresponding points in the images
= Estimate camera motion
= Expand the map if needed
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1. Feature Extraction and Matching

= We estimation camera pose by the observed landmarks
= Landmarks: fixed in 3D space and can be observed in the image

= Distinctive: landmarks should be easy to distinguish

= |mage features are used as landmarks in visual SLAM

= |mage features Corners

= Repeatable
= Distinctive

. edges
= Efficient s
= |ocal blocks \
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1. Feature Extraction
and Matching

=  Feature

Keypoint: position, size, angle,
score, etc.

Descriptor: encode the
surrounding image information

= Examples:

SIFT
SURF
ORB

etc (see OpenCV’s features2d
module)

features2d. 2D Features Framey

e Feature Detection and Description
o FAST
MSER
MSER::MSER
MSER::operator()
ORB
ORB::ORB
ORB::operator()
BRISK
BRISK::BRISK
BRISK::BRISK
BRISK::operator()
FREAK
FREAK::FREAK
o FREAK::selectPairs
¢ Common Interfaces of Feature Detectors
o KeyPoint
KeyPoint::KeyPoint
FeatureDetector
FeatureDetector::detect
FeatureDetector:.create
FastFeatureDetector
GoodFeaturesToTrackDetector
MserFeatureDetector
StarFeatureDetector
DenseFeatureDetector
SimpleBlobDetector
GridAdaptedFeatureDetector
PyramidAdaptedFeatureDetector
DynamicAdapieareaturelbetecior
DynamicAdaptedFeatureDetector::DynamicAday

o © o 0o 0o 0o 0o 0o o o o ©
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1. Feature Extraction and Matching

Take ORB as an example

= ORB
= Keypoint: Oriented FAST
u Descriptor: Steer BRIEF ......-....
HEEEEEEEEN

FAST keypoint
= Pisacorner if we have continuous n points whose image intensity is
larger/smaller than p over a threshold

= Called FAST-n, e.g., FAST-12, FAST-10, FAST-9 ...
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1. Feature Extraction and Matching

BN EEEEEE
e |
= Qriented FAST =' nn========

= Compute an angle in the FAST

" |naimage patch B, define its moment as:

mpq = Z xpyql(xiy);{p: CI} € {0,1}

X,YEB
= Find the centroid of the patch: (mlo ,m°1>

Mpg Mpo

= And compute the angle: 0 = arctan(mgy,/myq)
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1. Feature Extraction and Matching

= BRIEF descriptor
= Binary Robust Independent Elementary Features (BRIEF)

= BRIEF-n: Compare n pairs of pixels around the keypoint
= The pairs are chosen randomly or with a certain pattern

= ORB use steer (rotated) BRIEF
= Rotate the BRIEF pattern according to the precomputed angle
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1. Feature Extraction and Matching

=  Feature matching
= Compute the data association according the descriptor distance
= Brute-force matching: compare each pairs of descriptors
= FLANN: Fast approximate nearest neighbor

= For binary descriptors like BRIEF and ORB, use Hamming distance:
= Hamming(x,y) = number of different coefficients
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2. Optical Flow

= Optical Flow
= Estimate the motion of pixels in continuous images

= Sparse vs Dense Flow
= Sparse: Lucas-Kanade (LK) flow
= Dense: Horn-Schunck (HS) flow

= Can be used to find corresponding pixels in images

A 4

4
k 4
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2. Optical Flow

= How to estimate optical flow?
= Assume at time t we have a pixel at x,y, then its intensity is: I(z,y,?).
= At t+dt, it moves to x+dx, y+dy, and the intensity is: I(z + dz,y + dy,t + dt)

= Brightness constancy assumption:
I(z+de,y+dy,t +dt) = I(x,y,1).
= Note this is really a strong and ideal assumption since brightness can

be changed by highlight/shadow/occlusion/material/exposure and
will not hold any more
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2. Optical Flow

=  With brightness constancy, we expand the assumption:

I(z+de,y+dy,t +dt) = I(x,y,1).

o1 o1 oI
I(r+dr,y+dy,t+dt) = I (z,y,t)+ —dor+ —dy + —dt.
Y

or 13) ot
=  And obtain: Gradient with time
oI oI, aI oIde oIdy oI
ar 9t g,y T rdt =0 oz dt " oydt ot

Gradient on x-axis

Gradient on y-axis

= Qur object: compute dx/dt and dy/dt
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2. Optical Flow

8Idm+81dy__g
Or dt Oydt Ot

= However it is a underdetermined linear equation

= 2 unknowns and 1 equation

= We need extra constraints: assume brightness constancy in a small

window of w X w patch

L thl

= Then we get an overdetermined equation and solve it by linear least
square (or Moore-Penrose inverse of the coefficient matrix:

L. Iy,

L1,

15
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. I dr 9Idy oI
2. Optical Flow or dt " oydt ot

= The solution of LK flow depends on the image gradient
= Which is not smooth and can have dramatic changes
= Multi-level optical flow: from coarse to fine

Coarse-to-fine optical flow
estimation

/ “'. run iterative L-K ._-

lwarp & upsample ;"

——’ run iterative L-K «—,

image I ; /
! 37

Gaussian pyramid of image I, ¢ Gaussian pyramid of image I
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2. Optical Flow

= Some notes on LK-flow

We can also use non-linear
optimization tools (Gauss-Newton, L-
M, etc.) to solve the optical flow
iteratively

Optical flow can be used to track the
motion of the corners in videos

After obtaining the points, motion
estimation step will be same as
feature methods

Need to wrap the patches if the
motion is not pure translation

17
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3. Pose estimation approaches

= After obtaining the corresponding feature points we can estimate the
camera motion

= |n practice we have several cases:
= 2D-2D: if we only have two images
= 3D-2D: if we have a pre-built scene and an image

= 3D-3D: if we have two RGB-D image pairs or if we want to align a model
to a scene

= 2D-2D: epipolar geometry

= 3D-2D: Perspective-n-Points (PnP)
= 3D-3D: iterative closest points (ICP)
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Pose estimation approaches

2D-2D
= 3D point P (unknown)
= Projections: pl, p2
= |magesl], |12
= Transform: T12

Epipoles: projection of 01,02 -> €1,€2
Epipolar line: 0P projected in image 2 e,p, and vise vesa

Our purpose: estimate T12(T21) given p1 and p2
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3. Pose estimation approaches

= Epipolar geometry
= Assume the point P at
" Projection model:

P=[XY, 7] .

SlplzKP: SEPEZK(RP—}—t)

= Use unit plane homogenous coordinates (to remove the intrinsics):

=K 'p;, x=K 'p,. ‘

= Left multiplied by t":

* Then left multiplied by xI :

tASCQ = tAR.'Ifl.

ro = Ray +t.

elt xo = 2l t"Ra,.

= This should be zero:

;I:gt’\Ra:l = 0.

21
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3. Pose estimation approaches

= Epipolar constraints: | 27¢"Rz, =0.| or | pa K "t"RK 'p; =0.

= Which meas O1, O2 and P are in the same plane
» Define: | E=t"R, F=K "EK™', a;Ex =p,Fp, =0.

= Essential/Fundamental matrix

e Estimate the pose in two steps:
e Estimate Essential/Fundamental matrix
 Decompose the E/F to get Rt
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3. Pose estimation approaches

= Estimate essential matrix (eight-point algorithm)

= Treat E as an ordinary matrix, then one point gives us:

£1 €2 £3 U2

(Ul s U1, 1) €4 € €g Ua = 0.
ALY

o

= Rewrite it as: [ty U, Uy Ve, Uy, V1 U2, V1 Vs, Ug, V2, 1] - € = 0]

= Then we need at least eight points to .
solve this linear equation (because E 2
is homogenous and can be multiplied Wl ubed wloobdd bl ool owd oo 1) |7
by any non-zero factor) R I I D
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3. Pose estimation approaches

From Essential to R,t: use the SVD method

E=UZVT,

t) =URz(Z)2UT,
th =URz(-Z)2UT,

R, = URE(%)VT

R, = URE(—%)VT.

Four possible solutions but only one of them has positive depth

values

24
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3. Pose estimation approaches

= During the SVD we can also:

o1 +02 01+ 02

= Take E = Udiag( 5 g
singular value as 0,0,0

,0vT.  since essential matrix requires its

= And because DoF of E is only five (3 rot+3 trans -1 scale), we can also
solve it using only 5 points

= Called five point algorithm [1]

= More than eight points:
= RANSAC or least square

[1] Nistér D. An efficient solution to the five-point relative pose problem[J]. IEEE transactions on
pattern analysis and machine intelligence, 2004, 26(6): 756-770.
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3. Pose estimation approaches

= Eight-point algorithm can be used in the initialization step of
monocular SLAM

= Some notes on Essential matrix

= Scale is undetermined: we can normalize t or the mean depth of the
scene

= Pure rotation problem: when t=0 and t*R should be zero, and E cannot
be decomposed

= When the eight points are on the same plane, the problem will be
degenerated and we will use Homography matrix to solve the
initialization problem
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3. Pose estimation approaches

= 3D-2D: Perspective-n-Points
= Given n 3D points and their projections, estimate the camera pose
= Methods: linear algebra or nonlinear optimization

" Linear algebra:

DLT

P3P

EPnP/UPnP/etc.

You can just call cv::SolvePnP

The methods can be chosen by
giving different parameters

= Nonlinear:
= Minimizing the reprojection error
= Shown in ex3.3

27
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3. Pose estimation approaches

= 3D-3D:ICP
= Given two pairs of 3D points, estimate the rotation and translation
= The points can be pre-matched or not matched

= |f we have the matches, then the problem has analytical solution,
otherwise we don’t

= Assume we have two pointsets: P ={p1.---.pn}, P ={pl.---.p,}.
= Andthe motionis: Vi, p,=Rp, +t.
= Definetheerror: o _, _ (Rp, +1)

= And the least square will be:

min —OZII —(Rpi' +1))3
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3. Pose estimation approaches

= Some derivation
= Define the centroids: »r= %Z(pi), P = %Z(p;)-

i=1 Ci=1

= And rewrite the objective function:

T T
3 2 lIpi - (Rp;/ +t)|> =1 Y. lIp: = Rp’ ~t—p+Rp +p— Ry
= 1=
T
=13 |(pi—p—R(p/ —p'))+ (p— Rp —t)|”
i=1
T
=13 (lpi—p—R(p/' —p)I° +lp— Rp' — t|*+

==
I
[

20pi—p—R(p/' —p'))' (p— Rp' —1)).

This part is zero if you write it out
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Pose estimation approaches

So the objective function is simplified as:
min J = = i lpi—p—R(p/ —p)|"+|p— Rp' — t|".
Rt 2 —

We can just minimize the first part, and choose a t to set the second

part to zero
How to solve the first part?
!

Remove the centroid: G =pi—p, q =p;—p.
The problem becomes:

1 2
R* — arg min — . — Rq'|l.
argmin ;_1 |q q; ||
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3. Pose estimation approaches

= Some derivation:

1 — b 1
9 Z lgi — Rq; |~ = B) qu%’ +q; R'Rq; — 2q; Rq;.
i=1 i=1

It’s only related to the last part:

n

Zn: ~q;Rq; =) —tr(Rgjq) = —tr (Rzn: q;4; ) -
i=1 i=1

i=1

Solve it by SVD:

W=> aq'. W=UXVT R=UV"'
1=1
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Pose estimation approaches

It can be proven that if we find a solution, then this solution is the
global minimal

Otherwise, in some special degenerated cases, we cannot find a
solution

If we don’t have matches, then assume the closes points are matches
and solve this ICP iteratively

Also, note in the RGB-D case, you can use ICP and PnP separately or
put them together into a Bundle Adjustment
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Pose estimation approaches

Triangulation

Given the motion and the pixels, estimate the 3D point position

From geometry we know: | sizi=s;Ras +1.

We can either solve s1 or s2, take s2 as an example

Left multiply by x :

sixixy =0 = spx) Ry + x't.

= Qverdetermined linear equation

We can also solve s1, s2 together:

[—Rx3, x4] [2] =1

33
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3. Pose estimation approaches

= Summary
= We can get point pairs by feature matching or optical flow

= Estimate the pose in some cases:

= 2D-2D: estimate the essential/fundamental/Homography matrix and then
solve R,t from them

= 3D-2D: PnP, linear and non-linear method
= 3D-3D: ICP, also linear (SVD) method or nonlinear method
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4. Direct Method

= QOptical flow can estimate pixel’s motion, but

= Without considering the camera’s projection model

= Direct method: put them together in an optimization problem
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4. Direct Method

Derivation of direct method

= Assume we have two image and the motion is unknown (but with a

initial guess)

= We have a pixel at image 1, and know its depth

= Then we can compute the projection using the initial guess of transform

s1p1 = KP
Szpz ES K(RP + t)

Framel ——

/
Rt
\e);((,w/){ _— Frame?2
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4. Direct Method

= Brightness constancy assumption:

= Brightness error: e =1,(p1) — I,(p,)

= Motion estimation by least square:

I, (py) = I,(p3)

N

minj(T) = )

i=1

T

e; €

P

__— Frame?2
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4. Direct Method

= Jacobians by disturb model in SE(3)

e(6TDT) =1,(py) — I, (Zi Kexp(5€")TP> Define:

2

1
) q = 8ENTP, u=—Kq
Z;

1
~ I (p1) — I (Z_ZK(l + 6§MTP

1
= Il(pl) - 12 <p2 +Z_K6€ATP>
2

Then:

e(6TDT) =1,(py) — I,(py +u)

dl, du dq
~ 11 (p1) — I,(p2) — 6: g 06¢ 6§
B dl, du dq

~ T Budqase
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4. Direct Method

= So Jacobian has three parts:

= First % is the image gradients in the second image
u

= And the second the third part is same as geometric reprojection error:

- - -2
ou | 0 o S fea i 58
o Y Y2 XY X
DoE 0 Ly LY g S X us
= So the overall Jacobian will be: S, oI, Ou
" Ou 06¢

= So we need to choose points that have non-zero gradients, otherwise
they won’t contribute to the pose estimation

40 Dr. Jorg Stiickler, Computer Vision Group, TUM



4. Direct Method

= Some notes on direct method

= We need to know the depth in the first image (or the reference image),
which can be obtained from an RGB-D camera or pre-built structures

= Don’t need explicit matched points, what we only need is image
gradients (thus we can choose edges and smooth areas)

= Are able to build dense or semi-dense maps

= Can be also extended to multi-level and lead to a coarse-to-fine direct
method
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4. Direct Method

= Direct method is also affected by image gradients
= We usually can not control or predict the image data

= Soif the motion is too large, we can not guarantee the cost function is
always decreasing during the path to the correct point

= So direct method is only suitable for smooth motion (or high speed
camera)
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Dr. Jirgen Sturm, Computer
Vision Group, TUM

Any Questions?

Visual Navigation for Flying Robots
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