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1. Feature Extraction and Matching

▪ Visual odometry steps

▪ Find the corresponding points in the images

▪ Estimate camera motion

▪ Expand the map if needed
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1. Feature Extraction and Matching

▪ We estimation camera pose by the observed landmarks

▪ Landmarks: fixed in 3D space and can be observed in the image

▪ Distinctive: landmarks should be easy to distinguish

▪ Image features are used as landmarks in visual SLAM

▪ Image features

▪ Repeatable

▪ Distinctive

▪ Efficient

▪ Local 
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1. Feature Extraction 
and Matching

▪ Feature

▪ Keypoint: position, size, angle, 
score, etc.

▪ Descriptor: encode the 
surrounding image information

▪ Examples:

▪ SIFT

▪ SURF

▪ ORB

▪ etc (see OpenCV’s features2d 
module)
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1. Feature Extraction and Matching

▪ Take ORB as an example

▪ ORB

▪ Keypoint: Oriented FAST

▪ Descriptor: Steer BRIEF

▪ FAST keypoint

▪ P is a corner if we have continuous n points whose image intensity is 
larger/smaller than p over a threshold

▪ Called FAST-n, e.g., FAST-12, FAST-10, FAST-9 … 
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1. Feature Extraction and Matching

▪ Oriented FAST

▪ Compute an angle in the FAST

▪ In a image patch B, define its moment as:

▪ Find the centroid of the patch:

▪ And compute the angle:

Dr. Jörg Stückler, Computer Vision Group, TUM8

𝑚𝑝𝑞 = ෍

𝑥,𝑦∈𝐵

𝑥𝑝𝑦𝑞𝐼 𝑥, 𝑦 , 𝑝, 𝑞 ∈ 0,1

𝑚10

𝑚00
,
𝑚01

𝑚00

𝜃 = arctan Τ𝑚01 𝑚10



1. Feature Extraction and Matching

▪ BRIEF descriptor

▪ Binary Robust Independent Elementary Features (BRIEF)

▪ BRIEF-n: Compare n pairs of pixels around the keypoint

▪ The pairs are chosen randomly or with a certain pattern

▪ ORB use steer (rotated) BRIEF

▪ Rotate the BRIEF pattern according to the precomputed angle
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1. Feature Extraction and Matching

▪ Feature matching

▪ Compute the data association according the descriptor distance

▪ Brute-force matching: compare each pairs of descriptors

▪ FLANN: Fast approximate nearest neighbor

▪ For binary descriptors like BRIEF and ORB, use Hamming distance:

▪ Hamming(x,y) = number of different coefficients
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2. Optical Flow

▪ Optical Flow

▪ Estimate the motion of pixels in continuous images

▪ Sparse vs Dense Flow

▪ Sparse: Lucas-Kanade (LK) flow

▪ Dense: Horn-Schunck (HS) flow

▪ Can be used to find corresponding pixels in images

Dr. Jörg Stückler, Computer Vision Group, TUM12

Pixel

time



2. Optical Flow

▪ How to estimate optical flow?

▪ Assume at time t we have a pixel at x,y, then its intensity is:

▪ At t+dt, it moves to x+dx, y+dy, and the intensity is:

▪ Brightness constancy assumption:

▪ Note this is really a strong and ideal assumption since brightness can 
be changed by highlight/shadow/occlusion/material/exposure and 
will not hold any more
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2. Optical Flow

▪ With brightness constancy, we expand the assumption:

▪ And obtain: 

▪ Our object: compute dx/dt and dy/dt
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2. Optical Flow

▪ However it is a underdetermined linear equation

▪ 2 unknowns and 1 equation

▪ We need extra constraints: assume brightness constancy in a small 
window of              patch

▪ Then we get an overdetermined equation and solve it by linear least 
square (or Moore-Penrose inverse of the coefficient matrix:
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2. Optical Flow

▪ The solution of LK flow depends on the image gradient

▪ Which is not smooth and can have dramatic changes

▪ Multi-level optical flow: from coarse to fine
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2. Optical Flow

▪ Some notes on LK-flow

▪ We can also use non-linear 
optimization tools (Gauss-Newton, L-
M, etc.) to solve the optical flow 
iteratively

▪ Optical flow can be used to track the 
motion of the corners in videos

▪ After obtaining the points, motion 
estimation step will be same as 
feature methods

▪ Need to wrap the patches if the 
motion is not pure translation
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3. Pose estimation approaches

▪ After obtaining the corresponding feature points we can estimate the 
camera motion

▪ In practice we have several cases:

▪ 2D-2D: if we only have two images

▪ 3D-2D: if we have a pre-built scene and an image

▪ 3D-3D: if we have two RGB-D image pairs or if we want to align a model 
to a scene

▪ 2D-2D: epipolar geometry

▪ 3D-2D: Perspective-n-Points (PnP)

▪ 3D-3D: iterative closest points (ICP)
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3. Pose estimation approaches

▪ 2D-2D

▪ 3D point P (unknown)

▪ Projections: p1, p2

▪ Images I1, I2

▪ Transform: T12

▪ Epipoles: projection of            ->

▪ Epipolar line:          projected in image 2           and vise vesa

▪ Our purpose: estimate T12(T21) given p1 and p2
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3. Pose estimation approaches

▪ Epipolar geometry

▪ Assume the point P at 

▪ Projection model:

▪ Use unit plane homogenous coordinates (to remove the intrinsics):

▪ Left multiplied by      :

▪ Then left multiplied by       :  

▪ This should be zero:
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3. Pose estimation approaches

▪ Epipolar constraints:                              or

▪ Which meas O1, O2 and P are in the same plane

▪ Define:

▪ Essential/Fundamental matrix
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• Estimate the pose in two steps:
• Estimate Essential/Fundamental matrix
• Decompose the E/F to get R,t



3. Pose estimation approaches

▪ Estimate essential matrix (eight-point algorithm)

▪ Treat E as an ordinary matrix, then one point gives us:

▪ Rewrite it as:

▪ Then we need at least eight points to 
solve this linear equation (because E
is homogenous and can be multiplied
by any non-zero factor)
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3. Pose estimation approaches

▪ From Essential to R,t: use the SVD method

▪ Four possible solutions but only one of them has positive depth 
values
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3. Pose estimation approaches

▪ During the SVD we can also:

▪ Take                                                      since essential matrix requires its 
singular value as  

▪ And because DoF of E is only five (3 rot+3 trans -1 scale), we can also 
solve it using only 5 points

▪ Called five point algorithm [1]

▪ More than eight points:

▪ RANSAC or least square
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[1] Nistér D. An efficient solution to the five-point relative pose problem[J]. IEEE transactions on 
pattern analysis and machine intelligence, 2004, 26(6): 756-770.



3. Pose estimation approaches

▪ Eight-point algorithm can be used in the initialization step of 
monocular SLAM

▪ Some notes on Essential matrix

▪ Scale is undetermined: we can normalize t or the mean depth of the 
scene

▪ Pure rotation problem: when t=0 and t^R should be zero, and E cannot 
be decomposed

▪ When the eight points are on the same plane, the problem will be 
degenerated and we will use Homography matrix to solve the 
initialization problem
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3. Pose estimation approaches

▪ 3D-2D: Perspective-n-Points

▪ Given n 3D points and their projections, estimate the camera pose

▪ Methods: linear algebra or nonlinear optimization

▪ Linear algebra:
▪ DLT

▪ P3P

▪ EPnP/UPnP/etc. 

▪ You can just call cv::SolvePnP

▪ The methods can be chosen by 
giving different parameters

▪ Nonlinear:
▪ Minimizing the reprojection error

▪ Shown in ex3.3
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3. Pose estimation approaches

▪ 3D-3D: ICP

▪ Given two pairs of 3D points, estimate the rotation and translation

▪ The points can be pre-matched or not matched

▪ If we have the matches, then the problem has analytical solution, 
otherwise we don’t

▪ Assume we have two point sets:

▪ And the motion is:

▪ Define the error:

▪ And the least square will be:
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3. Pose estimation approaches

▪ Some derivation

▪ Define the centroids:

▪ And rewrite the objective function:
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3. Pose estimation approaches

▪ So the objective function is simplified as:

▪ We can just minimize the first part, and choose a t to set the second 
part to zero

▪ How to solve the first part?

▪ Remove the centroid:

▪ The problem becomes:
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3. Pose estimation approaches

▪ Some derivation:

▪ It’s only related to the last part:

▪ Solve it by SVD:
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3. Pose estimation approaches

▪ It can be proven that if we find a solution, then this solution is the 
global minimal

▪ Otherwise, in some special degenerated cases, we cannot find a 
solution

▪ If we don’t have matches, then assume the closes points are matches 
and solve this ICP iteratively

▪ Also, note in the RGB-D case, you can use ICP and PnP separately or 
put them together into a Bundle Adjustment
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3. Pose estimation approaches

▪ Triangulation

▪ Given the motion and the pixels, estimate the 3D point position

▪ From geometry we know:

▪ We can either solve s1 or s2, take s2 as an example

▪ Left multiply by        :

▪ Overdetermined linear equation

▪ We can also solve s1, s2 together:
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3. Pose estimation approaches

▪ Summary

▪ We can get point pairs by feature matching or optical flow

▪ Estimate the pose in some cases:

▪ 2D-2D: estimate the essential/fundamental/Homography matrix and then 
solve R,t from them

▪ 3D-2D: PnP, linear and non-linear method

▪ 3D-3D: ICP, also linear (SVD) method or nonlinear method
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4. Direct Method

▪ Optical flow can estimate pixel’s motion, but

▪ Without considering the camera’s projection model

▪ Direct method: put them together in an optimization problem
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4. Direct Method

▪ Derivation of direct method

▪ Assume we have two image and the motion is unknown (but with a 
initial guess)

▪ We have a pixel at image 1, and know its depth

▪ Then we can compute the projection using the initial guess of transform
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4. Direct Method

▪ Brightness constancy assumption:

▪ Brightness error:

▪ Motion estimation by least square:
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4. Direct Method

▪ Jacobians by disturb model in SE(3)

Dr. Jörg Stückler, Computer Vision Group, TUM39

𝑒 𝛿𝑇 ⊕ 𝑇 = 𝐼1 𝑝1 − 𝐼2
1

𝑍2
𝐾exp 𝛿𝜉∧ 𝑇𝑃

≈ 𝐼1 𝑝1 − 𝐼2
1

𝑍2
𝐾 1 + 𝛿𝜉∧ 𝑇𝑃

= 𝐼1 𝑝1 − 𝐼2 𝑝2 +
1

𝑍2
𝐾𝛿𝜉∧𝑇𝑃

𝑞 = 𝛿𝜉∧𝑇𝑃, 𝑢 =
1

𝑍2
𝐾𝑞

Define: 

𝑒 𝛿𝑇 ⊕ 𝑇 = 𝐼1 𝑝1 − 𝐼2 𝑝2 + 𝑢

≈ 𝐼1 𝑝1 − 𝐼2 𝑝2 −
𝜕𝐼2
𝜕𝑢

𝜕𝑢

𝜕𝑞

𝜕𝑞

𝜕𝛿𝜉
𝛿𝜉

= 𝑒 −
𝜕𝐼2
𝜕𝑢

𝜕𝑢

𝜕𝑞

𝜕𝑞

𝜕𝛿𝜉
𝛿𝜉

Then: 



4. Direct Method

▪ So Jacobian has three parts:

▪ First          is the image gradients in the second image

▪ And the second the third part is same as geometric reprojection error:

▪ So the overall Jacobian will be: 

▪ So we need to choose points that have non-zero gradients, otherwise 
they won’t contribute to the pose estimation
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4. Direct Method

▪ Some notes on direct method

▪ We need to know the depth in the first image (or the reference image), 
which can be obtained from an RGB-D camera or pre-built structures

▪ Don’t need explicit matched points, what we only need is image 
gradients (thus we can choose edges and smooth areas)

▪ Are able to build dense or semi-dense maps

▪ Can be also extended to multi-level and lead to a coarse-to-fine direct 
method
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4. Direct Method

▪ Direct method is also affected by image gradients

▪ We usually can not control or predict the image data

▪ So if the motion is too large, we can not guarantee the cost function is 
always decreasing during the path to the correct point

▪ So direct method is only suitable for smooth motion (or high speed 
camera)
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Any Questions?


