
Computer Vision Group 
Prof. Daniel Cremers

Practical Course: Vision-based Navigation
SS 2018

Dr. Jörg Stückler, Dr. Xiang Gao

Vladyslav Usenko, Prof. Dr. Daniel Cremers

Lecture 5. Backend



Contents

▪ Recursive Optimization

▪ Batch Optimization

▪ Pose graph

Dr. Jörg Stückler, Computer Vision Group, TUM2



Contents

▪ Recursive Optimization

▪ Batch Optimization

▪ Pose graph

Dr. Jörg Stückler, Computer Vision Group, TUM3



1. Recursive Optimization

▪ Backend

▪ Estimate the state variables from the noisy data

▪ Batch way

▪ Estimate the best state given all the data

▪ Bundle Adjustment in visual SLAM system

▪ Incremental way

▪ Keep the current (best) estimation, update it when new data is arrived

▪ Also throw away the past information

▪ Kalman Filter: Linear system + Gaussian noise

▪ Extended Kalman Filter: Nonlinear system + Gaussian noise

▪ Sliding window filter & multiple state constraint Kalman Filter
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1. Recursive Optimization

▪ A simple example

▪ When we walk blindfolded:

▪ At the beginning we know where we are

▪ Roughly estimate the distance of each step

▪ Uncertainty accumulates over time

▪ When you open your eyes at some time:

▪ Can observe the soundings

▪ Uncertainty in each step is still the same

▪ But can be corrected by observation

▪ Overall uncertainty can be kept within a certain range
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1. Recursive Optimization

▪ Recall the motion and observation model:

▪ Let’s start from Bayes filter

▪ Use      to denote the unknown variables in time k:

▪ Then the model can be simplified as:
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1. Recursive Optimization

▪ We show how to derive the recursive approach from batch approach

▪ Estimate the current state given data from 0 to k:

▪ Bayes’ rule (switch z_k):

▪ Expand the prior:
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Motion model prediction Estimation in k-1

Likehood Prior 



1. Recursive Optimization

▪ Different ways to treat this equation:

▪ Assume the Markov property: we assume x_k is only relevant to x_k-1

▪ Don’t assume Markov property: x_k is relevant to all previous state
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1. Recursive Optimization

▪ By assuming the Markov’s property:

▪ The second item becomes:

▪ This equation (Bayes’ rule) shows how to recursively estimate the 
status

▪ But we haven’t set the specific form of motion and obs model

▪ In Linear-Gaussian (LG) system, the recursive approach will lead to
Kalman Filter (KF)
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1. Recursive Optimization

▪ Derivation of KF in LG system

▪ Assume the state variables are Gaussian

▪ Use different notations since we need Bayes’ rule
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are noises

P(xk-1) = N x̂k-1, P̂k-1( ) xk ,Pk

Posterior Prior



1. Recursive Optimization

▪ Some conclusions to start with:

▪ Linear transform of Gaussian distribution:

▪ Assume                                      , then y is also Gaussian and satisfies:
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x ~ N(m,S), y = Ax+ b

E[y] = E[Ax + b] = AE[x]+ b = Am + b

Cov[y] = E[( y - E[y])( y - E[y])T ]

= E[A(x - m)(x - m)T AT ] = ASAT



1. Recursive Optimization

▪ With this we can derive the prior at time k using motion model:

▪ With motion model:

▪ This equation gives the prior distribution, denoted it as:

▪ From observation model we know:

▪ Compute the posterior model:
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P zk | xk( ) = N Ckxk ,Q( ).



1. Recursive Optimization

▪ A small trick: we assume the posterior is also Gaussian, so:

▪ Since they are all Gaussian, so we just expand it and compare the 
linear and quadratic coefficients

▪ The exponential part is:

▪ Compare the coefficients of        , for the quadratic part we have:
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𝑁 ො𝑥𝑘 , ෠𝑃𝑘 = 𝜂𝑁 𝐶𝑘𝑥𝑘 , 𝑄𝑘 ⋅ 𝑁 ҧ𝑥𝑘 , ത𝑃𝑘
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1. Recursive Optimization

▪ For the linear part we have:

▪ Rearrange it:

▪ Left multiply       and define:                         , then we have:                      
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P̂k K = P̂k  Ck
T  Q-1

K: Kalman gain

Innovation part



1. Recursive Optimization

▪ Kalman gain:                            requires 

▪ Another form:

▪ This requires the Sherman-Morrison-Woodbury identities:
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K = P̂k  Ck
T  Q-1 ෠𝑃𝑘

𝐾 = 𝐶𝑘
𝑇𝑄−1𝐶𝑘 + ത𝑃𝑘

−1 −1
𝐶𝑘
𝑇𝑄−1

= ത𝑃𝑘𝐶𝑘
𝑇 𝑄 + 𝐶𝑘 ത𝑃𝑘𝐶

𝑇 −1



1. Recursive Optimization

▪ Two steps in Kalman filter

1. Prediction

2. Correction

▪ Compute Kalman gain:

▪ Update the estimation:
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ҧ𝑥𝑘 = 𝐴𝑘 ො𝑥𝑘−1 + 𝑢𝑘 , ത𝑃𝑘 = 𝐴𝑘 ෠𝑃𝑘−1𝐴𝑘
𝑇 + 𝑅

𝐾 = ത𝑃𝑘𝐶𝑘
𝑇 𝑄 + 𝐶𝑘 ത𝑃𝑘𝐶

𝑇 −1

ො𝑥𝑘 = ҧ𝑥𝑘 + 𝐾 𝑧𝑘 − 𝐶𝑘 ҧ𝑥𝑘
෠𝑃𝑘 = 𝐼 − 𝐾𝐶𝑘 ത𝑃𝑘



1. Recursive Optimization

▪ Some notes on Kalman filter

▪ Kalman filter is the BLUE (best linear unbiased estimate) estimation in 
LG system

▪ Kalman filter gives the same result as MAP in LG system

▪ This is because the mode and mean are same in Gauss distribution

▪ We can also derive KF through optimization way

▪ Or by choose a best Kalman gain to get the best estimation
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1. Recursive Optimization

▪ Extended KF in NL systems:

▪ We take the Taylor expansion in current estimate:
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Denoted as F

Denoted as H



1. Recursive Optimization

▪ Then employ the conclusions in KF:

▪ Prediction:

▪ Correction:

▪ Kalman gain:

▪ Update:
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1. Recursive Optimization

▪ Discussion of KF and EKF

▪ Advantages

▪ Clean and simple

▪ Do not require any property of motion and observation model

▪ Can be used for multiple sensor fusion

▪ Disadvantages

▪ Need to assume Markov property (which is not satisfied when we have 
loop closure)

▪ May diverge if the observations have outliers

▪ Linearization may have error if the model has strong nonlinearity

▪ Gaussian approximation may not be accurate for some variables

▪ Need to store the mean and covariance matrix for all status
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2. Batch Optimization

▪ Batch optimization

▪ We’ve shown some conclusions in Lecture 3

▪ MAP estimation is equivalent to least square solution

▪ It is called Bundle Adjustment when used in visual SLAM systems

▪ We have a bundle of lights and adjust the cameras to fit the observation 
model
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2. Batch Optimization

▪ BA and graph optimization

▪ Least square in BA can be represented as a graph G={V,E}

▪ Where V is the node set containing the optimization variables

▪ And E is the edge set containing the observation errors

Dr. Jörg Stückler, Computer Vision Group, TUM23

Special pattern in BA:
• Each observation is only 

related to two variables 
(nodes)

• We don’t have point-point
edges (structure prior)



2. Batch Optimization

▪ According to optimization theory we will finally need to solve the 
normal equation:

▪ Each edge contributes to this H by:

▪ Consider an observation regarding to i-th camera and j-th point:

▪ This is a sparse matrix that only has two non-zero entries:
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𝐻𝛥𝑥 = −𝑏

𝐻 =෍

𝑖,𝑗

𝐽𝑖𝑗
𝑇 𝐽𝑖𝑗



2. Batch Optimization

▪ If we set the order of the overall status by keeping the cameras at 
first and points at last, then the H matrix has the special form:

▪ The relationship of the graph and H matrix:

▪ Each edge in the graph is corresponding to a non-zero block in H
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2. Batch Optimization

▪ In real-world BA the number of points is far more than cameras, so 
the H will be:
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The Arrow-like H matrix



2. Batch Optimization

▪ For a dense H matrix we need to inverse it to solve the normal 
equation, which has O(n^3) complexity

▪ But in BA this can be accelerated by employing the special structure 
of H

▪ Split the blocks in H:

▪ Idea:

▪ Since C is block diagonal, we use Gaussian elimination to eliminate the E 
and E^T
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B and C are diagonal block matrices
E and E^T is dense and the non-zero blocks 
are corresponding to real observations



2. Batch Optimization

▪ So the normal equation becomes:

▪ Solve it in two steps:

1. Solve the upper part to get 

2. Take it into the lower part and get 

▪ This is called Marginalization or Schur complement

▪ We can also use other approaches like Cholesky decomposition to 
solve this sparse linear problem
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Dxc

Dxp



2. Batch Optimization

▪ Marginalization

▪ From the probabilistic theory, it means:

▪ Joint = Marginal * Conditional

▪ In BA, we marginalize all the points into the cameras to make the 
acceleration

▪ And in KF & EKF, we actually marginalize all the past state into the 
current state

▪ We can also choose to marginalize part of the points or part of the 
cameras
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2. Batch Optimization

▪ After marginalization, the top-left corner of H won’t have the sparse 
structure again:

▪ But it shows the co-visibility relationship of the cameras

▪ The non-zero block in i,j means camera i and camera j have observed at 
least one same point
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2. Batch Optimization

▪ Marginalization will fill the original matrix and make it no longer 
sparse

▪ So in KF & EKF, the covariance matrix is not sparse

▪ And in recursive problems, we can

▪ Just use a dense matrix but keep it small (like EKF, only keeps the 
current camera estimation)

▪ Or use a special marginalization strategy to keep it sparse
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2. Batch Optimization

▪ Comparison of recursive and batch approaches:
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2. Batch Optimization

▪ Apply BA in SLAM

▪ Manage a keyframe set and map point set

▪ Batch approach

▪ Use BA to optimize part of the graph

▪ Keep others fixed

▪ Recursive approach (sliding window)

▪ Keep a constant number of keyframes

▪ Use BA to optimize the keyframe and
points inside the window

▪ Marginalize old keyframe and points when 
new data arrived
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3. Pose graph

▪ BA usually needs much computation resource

▪ So we put it in a single backed thread

▪ Modern CPU need several seconds to solve a problem with 100 cameras 
and 100,000 points

▪ If we build a problem that only has cameras and no points, then the 
computation can be greatly reduced
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3. Pose graph

▪ Pose graph

▪ Vertex: cameras only

▪ Edge: camera transform as observation

▪ Error:
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3. Pose graph

▪ Jacobians
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Adjoint:



3. Pose graph

▪ Assignment in pose graph

▪ Pose ball
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Any questions?


