

# Practical Course: Vision-based Navigation SS 2018

#### Lecture 5. Backend

Dr. Jörg Stückler, Dr. Xiang Gao Vladyslav Usenko, Prof. Dr. Daniel Cremers



#### **Contents**

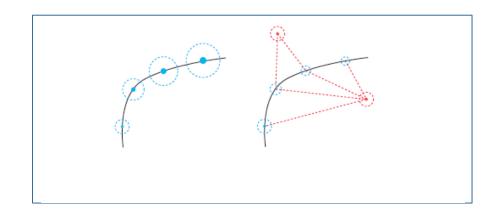
- Recursive Optimization
- Batch Optimization
- Pose graph

#### **Contents**

- Recursive Optimization
- Batch Optimization
- Pose graph

- Backend
  - Estimate the state variables from the noisy data
- Batch way
  - Estimate the best state given all the data
  - Bundle Adjustment in visual SLAM system
- Incremental way
  - Keep the current (best) estimation, update it when new data is arrived
  - Also throw away the past information
  - Kalman Filter: Linear system + Gaussian noise
  - Extended Kalman Filter: Nonlinear system + Gaussian noise
  - Sliding window filter & multiple state constraint Kalman Filter

- A simple example
- When we walk blindfolded:
  - At the beginning we know where we are
  - Roughly estimate the distance of each step
  - Uncertainty accumulates over time
- When you open your eyes at some time:
  - Can observe the soundings
  - Uncertainty in each step is still the same
  - But can be corrected by observation
  - Overall uncertainty can be kept within a certain range



Recall the motion and observation model:

$$\begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_{k,j} = h(y_j, x_k) + v_{k,j} \end{cases} k = 1, \dots, N, \ j = 1, \dots, M.$$

- Let's start from Bayes filter
- Use  $x_k$  to denote the unknown variables in time k:

$$x_k \stackrel{\Delta}{=} \{x_k, y_1, \dots, y_m\}.$$

Then the model can be simplified as:

$$\begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_k = h(x_k) + v_k \end{cases} \qquad k = 1, \dots, N.$$

- We show how to derive the recursive approach from batch approach
- Estimate the current state given data from 0 to k:

$$P(x_k|x_0,u_{1:k},z_{1:k}).$$

Bayes' rule (switch z\_k):

$$P\left(x_k|x_0,u_{1:k},z_{1:k}
ight)\propto P\left(z_k|x_k
ight)P\left(x_k|x_0,u_{1:k},z_{1:k-1}
ight).$$
 Likehood Prior

Expand the prior:

$$P\left(x_{k}|x_{0},u_{1:k},z_{1:k-1}\right) = \int P\left(x_{k}|x_{k-1},x_{0},u_{1:k},z_{1:k-1}\right) P\left(x_{k-1}|x_{0},u_{1:k},z_{1:k-1}\right) \mathrm{d}x_{k-1}.$$

$$(10.6)$$
Motion model prediction
Estimation in k-1

$$P\left(x_{k}|x_{0},u_{1:k},z_{1:k-1}\right) = \int P\left(x_{k}|x_{k-1},x_{0},u_{1:k},z_{1:k-1}\right) P\left(x_{k-1}|x_{0},u_{1:k},z_{1:k-1}\right) dx_{k-1}.$$
(10.6)

- Different ways to treat this equation:
  - Assume the Markov property: we assume x\_k is only relevant to x\_k-1
  - Don't assume Markov property: x\_k is relevant to all previous state

By assuming the Markov's property:

$$P(x_k|x_{k-1},x_0,u_{1:k},z_{1:k-1}) = P(x_k|x_{k-1},u_k).$$

The second item becomes:

$$P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) = P(x_{k-1}|x_0, u_{1:k-1}, z_{1:k-1}).$$

- This equation (Bayes' rule) shows how to recursively estimate the status
  - But we haven't set the specific form of motion and obs model
- In Linear-Gaussian (LG) system, the recursive approach will lead to Kalman Filter (KF)

Derivation of KF in LG system

$$\left\{egin{array}{ll} x_k=A_kx_{k-1}+u_k+w_k\ &z_k=C_kx_k+v_k \end{array}
ight. &k=1,\ldots,N. \ &w_k\sim N(0,R). \quad v_k\sim N(0,Q). \end{array}
ight.$$
 are noises

Assume the state variables are Gaussian

$$P(x_{k-1}) = N(\hat{x}_{k-1}, \hat{P}_{k-1}) \qquad \overline{x}_k, \overline{P}_k$$

**Posterior** 

Prior

Use different notations since we need Bayes' rule

- Some conclusions to start with:
- Linear transform of Gaussian distribution:
  - Assume  $x \sim N(M,S), y = Ax + b$ , then y is also Gaussian and satisfies:

$$E[y] = E[Ax + b] = AE[x] + b = Am + b$$

$$Cov[y] = E[(y - E[y])(y - E[y])^{T}]$$

$$= E[A(x - m)(x - m)^{T} A^{T}] = ASA^{T}$$

With this we can derive the prior at time k using motion model:

$$\begin{cases} x_k = A_k x_{k-1} + u_k + w_k \\ z_k = C_k x_k + v_k \end{cases} \qquad k = 1, \dots, N.$$

With motion model:

$$P(x_k|x_0, u_{1:k}, z_{1:k-1}) = N(A_k\hat{x}_{k-1} + u_k, A_k\hat{P}_kA_k^T + R).$$

This equation gives the prior distribution, denoted it as:

$$\bar{x}_k = A_k \hat{x}_{k-1} + u_k, \quad \bar{P}_k = A_k \hat{P}_{k-1} A_k^{\mathrm{T}} + R.$$

From observation model we know:

$$P(z_k \mid x_k) = N(C_k x_k, Q).$$

Compute the posterior model:

$$P(x_k|x_0, u_{1:k}, z_{1:k}) \propto P(z_k|x_k) P(x_k|x_0, u_{1:k}, z_{1:k-1}).$$

A small trick: we assume the posterior is also Gaussian, so:

$$N(\hat{x}_k, \hat{P}_k) = \eta N(C_k x_k, Q_k) \cdot N(\bar{x}_k, \bar{P}_k)$$

- Since they are all Gaussian, so we just expand it and compare the linear and quadratic coefficients
- The exponential part is:

$$(x_k - \hat{x}_k)^{\mathrm{T}} \hat{P}_k^{-1} (x_k - \hat{x}_k) = (z_k - C_k x_k)^{\mathrm{T}} Q^{-1} (z_k - C_k x_k) + (x_k - \bar{x}_k)^{\mathrm{T}} \overline{P}_k^{-1} (x_k - \bar{x}_k).$$

Compare the coefficients of  $\mathcal{X}_k$ , for the quadratic part we have:

$$\widehat{P}_k^{-1} = C_k^{\mathrm{T}} Q^{-1} C_k + \overline{P}_k^{-1}.$$

For the linear part we have:

$$(x_{k} - \hat{x}_{k})^{\mathrm{T}} \hat{P}_{k}^{-1} (x_{k} - \hat{x}_{k}) = (z_{k} - C_{k} x_{k})^{\mathrm{T}} Q^{-1} (z_{k} - C_{k} x_{k}) + (x_{k} - \overline{x}_{k})^{\mathrm{T}} \overline{P}_{k}^{-1} (x_{k} - \overline{x}_{k}).$$

$$-2 \hat{x}_{k}^{\mathrm{T}} \hat{P}_{k}^{-1} x_{k} = -2 z_{k}^{\mathrm{T}} Q^{-1} C_{k} x_{k} - 2 \overline{x}_{k}^{\mathrm{T}} \overline{P}_{k}^{-1} x_{k}$$

Rearrange it:

$$\widehat{P}_k^{-1} \widehat{x}_k = C_k^{\mathrm{T}} Q^{-1} z_k + \overline{P}_k^{-1} \overline{x}_k$$

• Left multiply  $\hat{P}_k$  and define:  $K = \hat{P}_k C_k^T Q^{-1}$ , then we have:

$$\hat{x}_{k} = \hat{P}_{k} C_{k}^{T} Q^{-1} z_{k} + \hat{P}_{k} \overline{P}_{k}^{-1} \overline{x}_{k}$$
 Innovation part
$$= K z_{k} + (I - K C_{k}) \overline{x}_{k} = \overline{x}_{k} + K (z_{k} - C_{k} \overline{x}_{k}).$$

K: Kalman gain

$$\hat{P}_{k}^{-1} = C_{k}^{\mathrm{T}} Q^{-1} C_{k} + \overline{P}_{k}^{-1}.$$

- Kalman gain:  $K = \hat{P}_k C_k^T Q^{-1}$  requires  $\hat{P}_k$
- Another form:

$$K = (C_k^T Q^{-1} C_k + \bar{P}_k^{-1})^{-1} C_k^T Q^{-1}$$
$$= \bar{P}_k C_k^T (Q + C_k \bar{P}_k C^T)^{-1}$$

This requires the Sherman-Morrison-Woodbury identities:

$$(A^{-1} + BD^{-1}C)^{-1} \equiv A - AB(D + CAB)^{-1}CA$$

$$(D + CAB)^{-1} \equiv D^{-1} - D^{-1}C(A^{-1} + BD^{-1}C)^{-1}BD^{-1}$$

$$(2.75a)$$

$$AB(D + CAB)^{-1} \equiv (A^{-1} + BD^{-1}C)^{-1}BD^{-1}$$

$$(2.75c)$$

$$(D + CAB)^{-1} CA \equiv D^{-1}C (A^{-1} + BD^{-1}C)^{-1}$$
 (2.75d)

- Two steps in Kalman filter
- 1. Prediction

$$\bar{x}_k = A_k \hat{x}_{k-1} + u_k, \qquad \bar{P}_k = A_k \hat{P}_{k-1} A_k^T + R$$

- Correction
  - Compute Kalman gain:

$$K = \bar{P}_k C_k^T (Q + C_k \bar{P}_k C^T)^{-1}$$

Update the estimation:

$$\hat{x}_k = \bar{x}_k + K(z_k - C_k \bar{x}_k)$$
$$\hat{P}_k = (I - KC_k)\bar{P}_k$$

- Some notes on Kalman filter
  - Kalman filter is the BLUE (best linear unbiased estimate) estimation in LG system
  - Kalman filter gives the same result as MAP in LG system
    - This is because the mode and mean are same in Gauss distribution
    - We can also derive KF through optimization way
    - Or by choose a best Kalman gain to get the best estimation

Extended KF in NL systems:

$$\begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_k = h(x_k) + v_k \end{cases} k = 1, \dots, N.$$

We take the Taylor expansion in current estimate:

$$x_k \approx f(\hat{x}_{k-1}, u_k) + \left. \frac{\partial f}{\partial x_{k-1}} \right|_{\hat{x}_{k-1}} (x_{k-1} - \hat{x}_{k-1}) + w_k.$$

Denoted as F

$$z_k pprox h\left(ar{x}_k
ight) + \left.rac{\partial h}{\partial x_k}
ight|_{ar{oldsymbol{x}}_k} (x_k - \hat{x}_k) + n_k.$$

Denoted as H

1. Recursive Optimization 
$$\begin{cases} x_k = f\left(x_{k-1}, u_k\right) + w_k \\ z_k = h\left(x_k\right) + v_k \end{cases} \quad k = 1, \dots, N.$$

- Then employ the conclusions in KF:
- Prediction:

$$\bar{x}_k = f(\hat{x}_{k-1}, u_k), \quad \bar{P}_k = F\hat{P}_kF^{\mathrm{T}} + R_k.$$

- Correction:
  - Kalman gain:  $K_k = \bar{P}_k H^{\mathrm{T}} (H \bar{P}_k H^{\mathrm{T}} + Q_k)^{-1}$ .
  - Update:  $\hat{x}_k = \bar{x}_k + K_k (z_k - h(\bar{x}_k)), \hat{P}_k = (I - K_k H) \bar{P}_k.$

- Discussion of KF and EKF
- Advantages
  - Clean and simple
  - Do not require any property of motion and observation model
  - Can be used for multiple sensor fusion
- Disadvantages
  - Need to assume Markov property (which is not satisfied when we have loop closure)
  - May diverge if the observations have outliers
  - Linearization may have error if the model has strong nonlinearity
  - Gaussian approximation may not be accurate for some variables
  - Need to store the mean and covariance matrix for all status

#### **Contents**

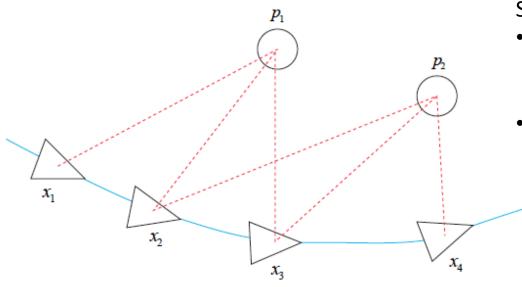
- Recursive Optimization
- Batch Optimization
- Pose graph

- Batch optimization
- We've shown some conclusions in Lecture 3
- MAP estimation is equivalent to least square solution

$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \|\boldsymbol{e}_{ij}\|^2 = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \|\boldsymbol{z}_{ij} - h(\boldsymbol{\xi}_i, \boldsymbol{p}_j)\|^2.$$

- It is called Bundle Adjustment when used in visual SLAM systems
  - We have a bundle of lights and adjust the cameras to fit the observation model

- BA and graph optimization
  - Least square in BA can be represented as a graph G={V,E}
  - Where V is the node set containing the optimization variables
  - And E is the edge set containing the observation errors



#### Special pattern in BA:

- Each observation is only related to two variables (nodes)
- We don't have point-point edges (structure prior)

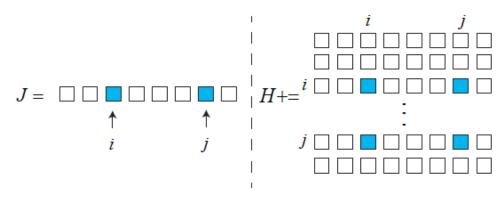
• According to optimization theory we will finally need to solve the normal equation:

$$H\Delta x = -b$$

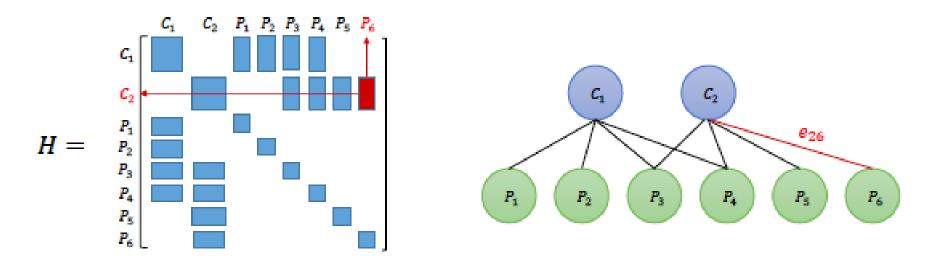
- Each edge contributes to this H by:  $H = \sum_{i,j} J_{ij}^T J_{ij}$
- Consider an observation regarding to i-th camera and j-th point:

$$J_{ij}(x) = \left(0_{2\times6}, ...0_{2\times6}, \frac{\partial e_{ij}}{\partial \xi_i}, 0_{2\times6}, ...0_{2\times3}, ...0_{2\times3}, \frac{\partial e_{ij}}{\partial p_j}, 0_{2\times3}, ...0_{2\times3}\right).$$

This is a sparse matrix that only has two non-zero entries:

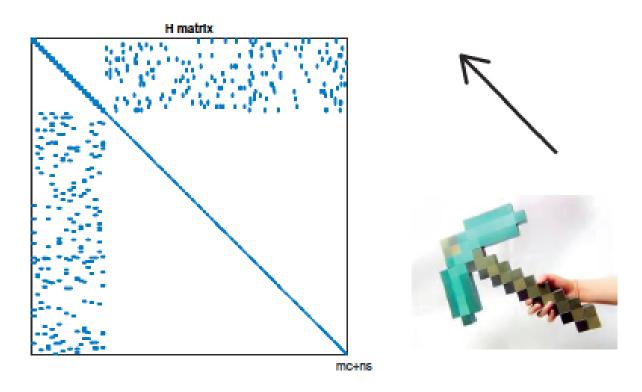


If we set the order of the overall status by keeping the cameras at first and points at last, then the H matrix has the special form:



- The relationship of the graph and H matrix:
  - Each edge in the graph is corresponding to a non-zero block in H

In real-world BA the number of points is far more than cameras, so the H will be:



The Arrow-like H matrix

- For a dense H matrix we need to inverse it to solve the normal equation, which has O(n^3) complexity
- But in BA this can be accelerated by employing the special structure of H
- Split the blocks in H:

$$egin{bmatrix} m{B} & m{E} \ m{E}^{\mathrm{T}} & m{C} \end{bmatrix} egin{bmatrix} \Delta m{x}_c \ \Delta m{x}_p \end{bmatrix} = egin{bmatrix} m{v} \ m{w} \end{bmatrix}.$$

B and C are diagonal block matrices E and E^T is dense and the non-zero blocks are corresponding to real observations

- Idea:
  - Since C is block diagonal, we use Gaussian elimination to eliminate the E and E^T

$$\begin{bmatrix} I & -EC^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} B & E \\ E^{\mathrm{T}} & C \end{bmatrix} \begin{bmatrix} \Delta x_c \\ \Delta x_p \end{bmatrix} = \begin{bmatrix} I & -EC^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix}. \qquad \begin{bmatrix} B - EC^{-1}E^{\mathrm{T}} & 0 \\ E^{\mathrm{T}} & C \end{bmatrix} \begin{bmatrix} \Delta x_c \\ \Delta x_p \end{bmatrix} = \begin{bmatrix} v - EC^{-1}w \\ w \end{bmatrix}.$$

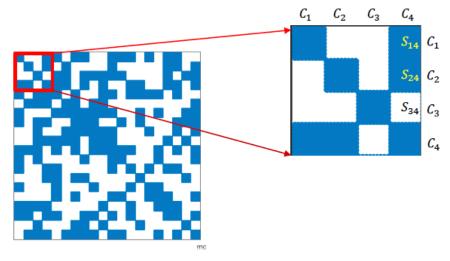
So the normal equation becomes:

$$egin{bmatrix} m{B} - m{E}m{C}^{-1}m{E}^{\mathrm{T}} & \mathbf{0} \ m{E}^{\mathrm{T}} & m{C} \end{bmatrix} egin{bmatrix} \Delta m{x}_c \ \Delta m{x}_p \end{bmatrix} = egin{bmatrix} m{v} - m{E}m{C}^{-1}m{w} \ m{w} \end{bmatrix}.$$

- Solve it in two steps:
  - 1. Solve the upper part to get  $Dx_c$
  - 2. Take it into the lower part and get  $Dx_p$
- This is called Marginalization or Schur complement
  - We can also use other approaches like Cholesky decomposition to solve this sparse linear problem

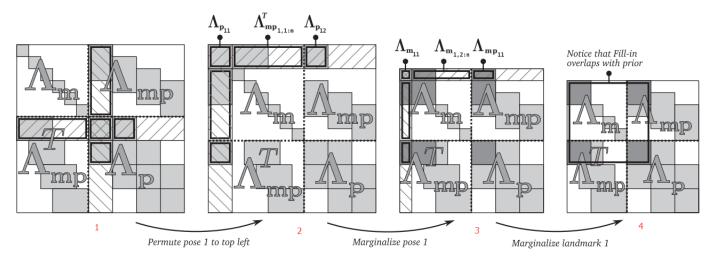
- Marginalization
  - From the probabilistic theory, it means:
  - $P(x_c, x_p) = P(x_c) \cdot P(x_p|x_c)$ . Joint = Marginal \* Conditional
  - In BA, we marginalize all the points into the cameras to make the acceleration
  - And in KF & EKF, we actually marginalize all the past state into the current state
  - We can also choose to marginalize part of the points or part of the cameras

• After marginalization, the top-left corner of H won't have the sparse structure again:



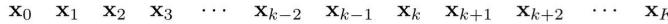
- But it shows the co-visibility relationship of the cameras
  - The non-zero block in i,j means camera i and camera j have observed at least one same point

- Marginalization will fill the original matrix and make it no longer sparse
- So in KF & EKF, the covariance matrix is not sparse
- And in recursive problems, we can
  - Just use a dense matrix but keep it small (like EKF, only keeps the current camera estimation)
  - Or use a special marginalization strategy to keep it sparse



#### Comparison of recursive and batch approaches:

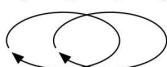
Gauss-Newton iterates over the entire trajectory, but runs offline and not in constant time

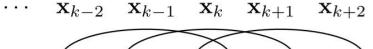


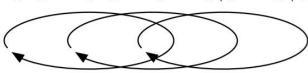


Sliding-window filters iterate over several timesteps at once, run online and in constant time

 $\mathbf{x}_2 \quad \mathbf{x}_3$  $\mathbf{x}_0$ 

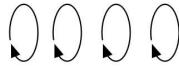






IEKF iterates at only one timestep at a time, but runs online and in constant time

 $\mathbf{x}_0$  $\mathbf{x}_1$  $\mathbf{x}_2 \quad \mathbf{x}_3$  $\mathbf{x}_{k-2} \quad \mathbf{x}_{k-1} \quad \mathbf{x}_k$  $\mathbf{x}_{k+1}$  $\mathbf{x}_{k+2}$  $\mathbf{x}_K$ 





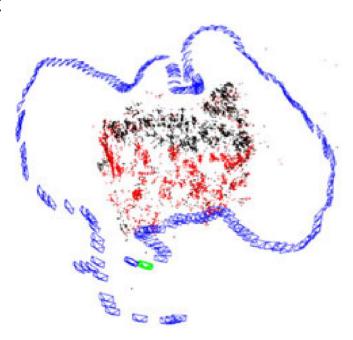








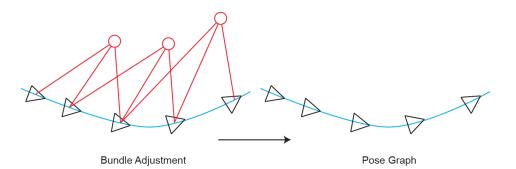
- Apply BA in SLAM
  - Manage a keyframe set and map point set
- Batch approach
  - Use BA to optimize part of the graph
  - Keep others fixed
- Recursive approach (sliding window)
  - Keep a constant number of keyframes
  - Use BA to optimize the keyframe and points inside the window
  - Marginalize old keyframe and points when new data arrived



#### **Contents**

- Recursive Optimization
- Batch Optimization
- Pose graph

- BA usually needs much computation resource
  - So we put it in a single backed thread
  - Modern CPU need several seconds to solve a problem with 100 cameras and 100,000 points
- If we build a problem that only has cameras and no points, then the computation can be greatly reduced



- Pose graph
  - Vertex: cameras only
  - Edge: camera transform as observation

$$\Delta T_{ij} = T_i^{-1} T_j.$$

Error:

$$e_{ij} = \ln \left( \Delta T_{ij}^{-1} T_i^{-1} T_j \right)^{\vee}$$
  
= \ln \left( \exp((-\xi\_{ij})^{\lambda}) \exp((-\xi\_i)^{\lambda}) \exp(\xi\_j)^{\lambda}.

#### Jacobians

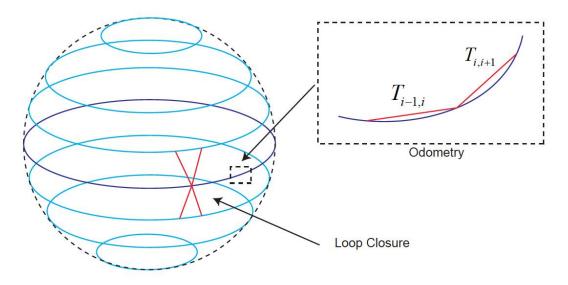
$$\begin{split} \hat{e}_{ij} &= \ln \left( \boldsymbol{T}_{ij}^{-1} \boldsymbol{T}_{i}^{-1} \exp ((-\delta \boldsymbol{\xi}_{i})^{\wedge}) \exp (\delta \boldsymbol{\xi}_{j}^{\wedge}) \boldsymbol{T}_{j} \right)^{\vee} \\ &= \ln \left( \boldsymbol{T}_{ij}^{-1} \boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j} \exp \left( \left( -\operatorname{Ad}(\boldsymbol{T}_{j}^{-1}) \delta \boldsymbol{\xi}_{i} \right)^{\wedge} \right) \exp (\left( \operatorname{Ad}(\boldsymbol{T}_{j}^{-1}) \delta \boldsymbol{\xi}_{j} \right)^{\wedge} \right)^{\vee} \\ &\approx \ln \left( \boldsymbol{T}_{ij}^{-1} \boldsymbol{T}_{i}^{-1} \boldsymbol{T}_{j} \left[ \boldsymbol{I} - (\operatorname{Ad}(\boldsymbol{T}_{j}^{-1}) \delta \boldsymbol{\xi}_{i})^{\wedge} + (\operatorname{Ad}(\boldsymbol{T}_{j}^{-1}) \delta \boldsymbol{\xi}_{j})^{\wedge} \right] \right)^{\vee} \\ &\approx \boldsymbol{e}_{ij} + \frac{\partial \boldsymbol{e}_{ij}}{\partial \delta \boldsymbol{\xi}_{i}} \delta \boldsymbol{\xi}_{i} + \frac{\partial \boldsymbol{e}_{ij}}{\partial \delta \boldsymbol{\xi}_{j}} \delta \boldsymbol{\xi}_{j} \end{split}$$

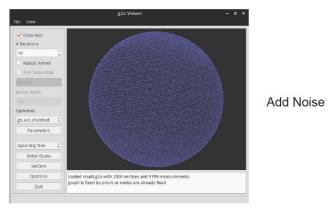
$$\frac{\partial \boldsymbol{e}_{ij}}{\partial \delta \boldsymbol{\xi}_{i}} = -\boldsymbol{\mathcal{J}}_{r}^{-1}(\boldsymbol{e}_{ij}) \operatorname{Ad}(\boldsymbol{T}_{j}^{-1}).$$

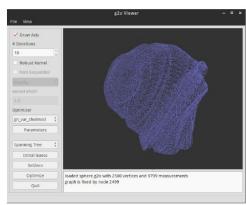
$$\boldsymbol{\mathcal{J}}_{r}^{-1}(\boldsymbol{e}_{ij}) \approx \boldsymbol{I} + \frac{1}{2} \begin{bmatrix} \boldsymbol{\phi}_{\boldsymbol{e}}^{\wedge} & \boldsymbol{\rho}_{\boldsymbol{e}}^{\wedge} \\ \boldsymbol{0} & \boldsymbol{\phi}_{\boldsymbol{e}}^{\wedge} \end{bmatrix}.$$

$$\exp\left(\left(\operatorname{Ad}(\boldsymbol{T})\boldsymbol{\xi}\right)^{\wedge}\right) = \boldsymbol{T}\exp(\boldsymbol{\xi}^{\wedge})\boldsymbol{T}^{-1}.$$

- Assignment in pose graph
- Pose ball







up, TUM

# Any questions?