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1. Recursive Optimization

= Backend
= Estimate the state variables from the noisy data

= Batch way
= Estimate the best state given all the data
= Bundle Adjustment in visual SLAM system

" |[ncremental way
= Keep the current (best) estimation, update it when new data is arrived
= Also throw away the past information
= Kalman Filter: Linear system + Gaussian noise
= Extended Kalman Filter: Nonlinear system + Gaussian noise
= Sliding window filter & multiple state constraint Kalman Filter
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1. Recursive Optimization e

= Asimple example |
= When we walk blindfolded:

= At the beginning we know where we are
= Roughly estimate the distance of each step
= Uncertainty accumulates over time
= When you open your eyes at some time:
= Can observe the soundings
= Uncertainty in each step is still the same
= But can be corrected by observation

= Qverall uncertainty can be kept within a certain range
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1. Recursive Optimization

= Recall the motion and observation model:
Tr = [ (Tr—1,ur) + wi

zki = h(yj, @) + v

= Let’s start from Bayes filter
= Use x; to denote the unknown variables in time k:

A
T ={Tk, Y1,...,Ym}-

= Then the model can be simplified as:

L = Tp_1, U ) T W
P S Eenu) e N

Zp = h{-’]ﬁk} + Vg
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Recursive Optimization

We show how to derive the recursive approach from batch approach

Estimate the current state given data from 0 to k:

P(xry|To, U1k, Z1:1).

Bayes’ rule (switch z_k):

P(xy|xg, Uik, 21:1) o< P(2g|@g) P(Zr|To, Uk, Z1:0—1) -

Likehood

Expand the prior:

Prior

P(xg|To, w15, 21:6—1) = fP($k|$k—13;Fﬂuul:kszl:k—l}P(:Ek—1|$l]sH-l:k:zl:k—l)d:rk—l-

Motion model prediction

(10.6)

Estimation in k-1
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1. Recursive Optimization

P (xg|xo, w1k, 21:6-1) = ]P (Tr|Tr—1, To, U1k, 21:—1) P (Tr—1|T0, W1k, 21:6—1) dTr_1.

(10.6)
= Different ways to treat this equation:
= Assume the Markov property: we assume x_k is only relevant to x_k-1
= Don’t assume Markov property: x_k is relevant to all previous state
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Recursive Optimization

By assuming the Markov’s property:
P(xg|Tr_1,To, U1:k, Z1:k—1) = P (Tg|Tr_1,ur) .
The second item becomes:

P(xgp_1|To, U1:k,21:6—1) = P(Tp—1|To, Ui:k—1, Z1:k—1) -

This equation (Bayes’ rule) shows how to recursively estimate the
status

= But we haven’t set the specific form of motion and obs model

In Linear-Gaussian (LG) system, the recursive approach will lead to
Kalman Filter (KF)

9 Dr. Jorg Stiickler, Computer Vision Group, TUM



1. Recursive Optimization

= Derivation of KF in LG system

rr=A.rr_1 +ur +w
g ok F k k=1,...,N.

zr = Crxyp +vp
wr ~ N(0,R). v~ N(0,Q). are noises

= Assume the state variables are Gaussian

P(x,,) = N()ek-vﬁk-l) )_Ck’Pk

Posterior Prior
= Use different notations since we need Bayes’ rule
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1. Recursive Optimization

= Some conclusions to start with:

= Linear transform of Gaussian distribution:
= Assume x~N(mS),y=A4x+b ,theny is also Gaussian and satisfies:
E[y]= E[Ax+b] = AE[x]+ b= Am+ b

Cov[y]l= E[(y - E[y)(y - E[¥])']
= E[A(x - m)(x - m)” AT]= ASA”
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1. Recursive Optimization

= With this we can derive the prior at time k using motion model:

k=1,...,N.

rp = ApTr_1 +up + wy
zr = Crg + vp

=  With motion model:
P (xp|xo, 1k, Z1:0—1) = N (Akff‘-;:—l + ug, Ap P AL + R) .

= This equation gives the prior distribution, denoted it as:

T = Apdp_1 +ug, Pp= Akﬁk—lﬂg + R.
= From observation model we know:
P(z,|x,)=N(Cx,.0).
= Compute the posterior model:

P (xy|xg, wy.g, 21.1) o< P(zg|xg) P (2g|To, Uy, Z1:51) -
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1. Recursive Optimization

= A small trick: we assume the posterior is also Gaussian, so:

N(&y, P) = nN(Cexy, Qi) - N (X, i)

= Since they are all Gaussian, so we just expand it and compare the
linear and quadratic coefficients

= The exponential part is:

(xk —;Ck)Tﬁ:(xk —;Ck): (Zk —Ckxk)TQ_l(Zk —Ckxk)+(xk —)_Ck)TF;] (xk —)_Ck).

= Compare the coefficients of X for the quadratic part we have:

A~ —1 —_
P = C,?Q_lck +Pk1.
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1. Recursive Optimization

= For the linear part we have:
(xk—;ck)Ti’:(xk—)Ack)=(zk—Ckxk)TQ_l(Zk—Ckxk)+(xk—;k)Tﬁ:(xk—)_ck).

AT A=1

—2xi Py x, =-27,07'C x, - 2X P 'x,

= Rearrange it:

~=1 A

_ —-1_
Pr xi = C,;FQ 1Zk-I-Pk X,

Left multiply ﬁk and define: K:IA’k C; 0, then we have:

A ——]—

)%k _Pk C o Zk+PP’< Xk Innovation part
=Kz, +(I-KC, )X, = xi +K(z, - C,X,).
K: Kalman gain kl— C O C -I-Pk.
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Recursive Optimization

Kalman gain: K=P, C] O™ requires P
Another form:
K =(Clo 'C,+Pit) clQ™
= BT (Q + CPCT) ™
This requires the Sherman-Morrison-Woodbury identities:

(A"'+BD'C) '=A-AB(D+CAB) 'CA (2.75a)

(D+CAB) '=D'-D'C(A'+BD'C) ' BD! (2.75b)
AB(D+CAB) '=(A"'+BD"'C) ' BD"! (2.75¢)
(D+CAB)"'cA=D'Cc(A'+BD 'C)"’ (2.75)
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1. Recursive Optimization

= Two steps in Kalman filter
1. Prediction

Xy = ApXp—1 + Ux,  Pp = ApP_1AL +R
2. Correction

= Compute Kalman gain:
K = P.CT(Q + CPCT) ™"

= Update the estimation:

X = X, + K(z — C_kfk)
Py = (I —KCP,
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1. Recursive Optimization

= Some notes on Kalman filter

= Kalman filter is the BLUE (best linear unbiased estimate) estimation in
LG system
= Kalman filter gives the same result as MAP in LG system
= This is because the mode and mean are same in Gauss distribution
= We can also derive KF through optimization way
= Or by choose a best Kalman gain to get the best estimation
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1. Recursive Optimization

= Extended KF in NL systems:

{ rr = f(Tr_1,ur) + wy

Zp = h(Ik) + Vg

= We take the Taylor expansion in current estimate:

of

Tr_ 1 — Lr_1) 4+ We.
Bt r (Tr—1 k—1) k

Ep_1

T ~ f(Tp_1,ur) +

Denoted as F

dh .
zkﬁh(i:k)—i—a—mk (xp — Tx) + Npg.

&}

Denoted as H
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Recursive Optimization {ka(mk—buﬂwk F—1.. N

zr = h(Tk) + vi

Then employ the conclusions in KF:

Prediction:
Tr = f(Zx_1,ux), Pp=FP.F"+R,.

Correction:
. _ _ —1
= Kalman gain: Ky,=PH'(HP.H' + Q) .

" Update: x =& + K (2 — h(2x)) , Pr = (I — Ky H) Py,
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1. Recursive Optimization

= Discussion of KF and EKF

= Advantages
= Clean and simple
= Do not require any property of motion and observation model
= Can be used for multiple sensor fusion

= Disadvantages

= Need to assume Markov property (which is not satisfied when we have
loop closure)

= May diverge if the observations have outliers

= Linearization may have error if the model has strong nonlinearity
= Gaussian approximation may not be accurate for some variables
= Need to store the mean and covariance matrix for all status
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Batch Optimization

Batch optimization
We’ve shown some conclusions in Lecture 3
MAP estimation is equivalent to least square solution

S5 Ml =5 33" Iz — hig i)l
i=1 j=1

i=1 j=1

badi | =t

It is called Bundle Adjustment when used in visual SLAM systems

= We have a bundle of lights and adjust the cameras to fit the observation
model
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2. Batch Optimization

= BA and graph optimization
= Least square in BA can be represented as a graph G={V,E}
= Where V is the node set containing the optimization variables
= And E is the edge set containing the observation errors

- ? -

X

b
A

23

P
N
(J (nodes)

- .

Special pattern in BA:
e Each observation is only
related to two variables

 We don’t have point-point
edges (structure prior)
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2. Batch Optimization

According to optimization theory we will finally need to solve the
normal equation:

HAx = —b
Each edge contributes to thisH by: 11 = z]ufu
Consider an observation regarding to i-th camera and j-th point:

d’E; IE;?E:'I
02.6,..02.3,..00,,3, —. 02,3, sza) ,
EI'£1 di'—"'j'

This is a sparse matrix that only has two non-zero entries:

Jii(x) = ([Iz,uj 026,

t T _
i J JOEOOOE O

|
I
J- O0EO00ED  He=' 00
I
I
| mlninininls]sls
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2. Batch Optimization

= |f we set the order of the overall status by keeping the cameras at
first and points at last, then the H matrix has the special form:

&b G B PP F
- Illl
: &) (e
P | [ ) €25
H= r| |l [
P — e e -
| N F x_ll y b I_; w R". £ , |
z | N O VR R B R R R
P, ] oy WY W Y W W
Fs L M |

= The relationship of the graph and H matrix:
= Each edge in the graph is corresponding to a non-zero block in H
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2. Batch Optimization

" |n real-world BA the number of points is far more than cameras, so
the H will be:

H metrix
(A R - T A
'l“lll"‘llll 1
b oK o

.l‘ ] [} ]
[ ]

Mc+nE

The Arrow-like H matrix
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Batch Optimization

= For a dense H matrix we need to inverse it to solve the normal
equation, which has O(n”3) complexity

= Butin BA this can be accelerated by employing the special structure
of H

= Split the blocks in H:

{B E] [ Az, ] [ v ] B and C are diagonal block matrices
LET C'J [ A J - L J : E and E~T is dense and the non-zero blocks
Tr v are corresponding to real observations

" |dea:
= Since Cis block diagonal, we use Gaussian elimination to eliminate the E

and EAT
) )

1 -ec—*| B E|| aa. | v—-EC'w
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2. Batch Optimization

= So the normal equation becomes:
B_-EC-'E' 0| | A=z,
E! C| | Az,

= Solve it in two steps:

v— EC lw

w

1. Solve the upper part to get Dx,
2. Take it into the lower part and get Dx,
= Thisis called Marginalization or Schur complement

=  We can also use other approaches like Cholesky decomposition to
solve this sparse linear problem
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2. Batch Optimization

Marginalization

From the probabilistic theory, it means:
P(x.,x,) = P(xz.) - P(x,|xz.). Joint = Marginal * Conditional

In BA, we marginalize all the points into the cameras to make the
acceleration

And in KF & EKF, we actually marginalize all the past state into the
current state

We can also choose to marginalize part of the points or part of the
cameras
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2. Batch Optimization

= After marginalization, the top-left corner of H won’t have the sparse
structure again:

m

= But it shows the co-visibility relationship of the cameras

= The non-zero block in i,j means camera i and camera j have observed at
least one same point
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2. Batch Optimization

= Marginalization will fill the original matrix and make it no longer
sparse
= Soin KF & EKF, the covariance matrix is not sparse

= And in recursive problems, we can

= Just use a dense matrix but keep it small (like EKF, only keeps the
current camera estimation)

= Or use a special marginalization strategy to keep it sparse
Apu AT;“pl,l:m Apu

. Amu Amlpz:" Aml’u Notice that Fill-in
’S @ A@V * overlaps w'ith prior
= N A, A m; ﬁ %%
L @ g e | e
mpi M LY Ly smp| 4
L ot aflNniane

il
1 - 5

Permute pose 1 to top left Marginalize pose 1 Marginalize landmark 1

o
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2. Batch Optimization

= Comparison of recursive and batch approaches:

Gauss-Newton iterates over the entire trajectory, but runs offline and not in constant time
Xo X1 X2 X3 0 Xp—2 Xp-1 X Xp41 Xgy2 o o XK

 — i

Sliding-window ﬁlters iterate over several timesteps at once, run online and in constant time
Xk—2 Xk—1 Xk+1 Xk+2 0 XK

O (LB

IEKF iterates at only one timestep at a time, but runs online and in constant time
Xk—2 Xg—1 Xk+1 Xk+2

0000 00000 O
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2. Batch Optimization

= Apply BAin SLAM

= Manage a keyframe set and map point set
= Batch approach ffffb”%’fijb o6 \“\
= Use BA to optimize part of the graph f i wﬁ*’ﬁ}*’{: f‘r
= Keep others fixed % &iﬁ ?3 “3"::3‘ ’?
= Recursive approach (sliding window) %y % ‘%"‘: f
= Keep a constant number of keyframes : i :':&. i%if«r« /
= Use BA to optimize the keyframe and h?: )
points inside the window 2o e

Marginalize old keyframe and points when
new data arrived
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3. Pose graph

= BA usually needs much computation resource
= So we putitin asingle backed thread

= Modern CPU need several seconds to solve a problem with 100 cameras
and 100,000 points

= |f we build a problem that only has cameras and no points, then the
computation can be greatly reduced

W

_—
Bundle Adjustment Pose Graph
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3. Pose graph

= Pose graph
= \ertex: cameras only
= Edge: camera transform as observation

AT;; =T, 'T;.
= Error:
e;; =In(AT;'T7'T))"
= In (exp((—&;;)") exp((—&)") exp(£)) "

36 Dr. Jorg Stiickler, Computer Vision Group, TUM



3. Pose graph

= Jacobians

& =1In(T;"T; " exp((—0&:)") exp(3€6/)T;)

in (7T exp ((~Ad(T;)0€,) ") exp((Ad(T;)36,) ")
In (T;'T; T [I — (AA(T;")6€)" + (A(T; )3E)"]) |
New+aev"6£z (‘;’2653-

22

aeij

_ g1 . —1
8653 T j‘r’ (e’t.?)Ad(T} ) » 1 é\ pé\
ae j,, (eﬁ'j) ~ I -+ = N .
VI = -1 0 A

Adjoint: | exp ((Ad(T)€)") = T exp(&M)T !
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3. Pose graph

= Assignment in pose graph

= Pose ball

Robust Kernel

Optimizer
gn.var_cholmod

Parameters

Spanning Tree

nitia) Guess
setzern
optimize

Quit

Odometry

Loop Closure

V Draw Axis
#Iterations
10

Robust Kemel

Add Noise

loaded sphere.g20 with 2500 vertices and 9799 measurements

(0aded result.§20 with 2500 vertices and 9799 measur
graph Is fixed by priors or nodes are already fixed — graph Is fixed by node 2439
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Any guestions?

Visual Navigation for Flying Robots
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