

Multiple View Geometry: Exercise Sheet 5

Prof. Dr. Daniel Cremers, David Schubert, Mohammed Brahimi Computer Vision Group, TU Munich

http://vision.in.tum.de/teaching/ss2019/mvg2019

Exercise: June 12th, 2019

Part I: Theory

This part of the exercises should be solved at home.

1. The Lucas-Kanade method

The weighted Lucas-Kanade energy $E(\mathbf{v})$ is defined as

$$E(\mathbf{v}) = \int_{W(\mathbf{x})} G(\mathbf{x} - \mathbf{x}') \left\| \nabla I(\mathbf{x}', t)^{\top} \mathbf{v} + \partial_t I(\mathbf{x}', t) \right\|^2 d\mathbf{x}'.$$

Assume that the weighting function G is chosen such that $G(\mathbf{x} - \mathbf{x}') = 0$ for any $\mathbf{x}' \notin W(\mathbf{x})$. In the following, we note $I_t = \partial_t I$ and $(I_{x_1}, I_{x_2})^\top = \nabla I$.

(a) Prove that the minimizer \mathbf{b} of $E(\mathbf{v})$ can be written as

$$\mathbf{b} = -M^{-1}\mathbf{q}$$

where the entries of M and \mathbf{q} are given by

$$m_{ij} = G * (I_{x_i} \cdot I_{x_j})$$
 and $q_i = G * (I_{x_i} \cdot I_t)$

- (b) Show that if the gradient direction is constant in $W(\mathbf{x})$, i.e. $\nabla I(\mathbf{x}',t) = \alpha(\mathbf{x}',t)\mathbf{u}$ for a scalar function α and a 2D vector \mathbf{u} , M is not invertible.
 - Explain how this observation is related to the aperture problem.
- (c) Write down explicit expressions for the two components b_1 and b_2 of the minimizer in terms of m_{ij} and q_i .

Note: G * A denotes the convolution of image A with a kernel $G : \mathbb{R}^2 \to \mathbb{R}$ and is defined as

$$G * A = \int_{\mathbb{R}^2} G(\mathbf{x} - \mathbf{x}') A(\mathbf{x}) d\mathbf{x}'$$
.

2. The Reconstruction Problem

The bundle adjustment (re-)projection error for N points $X_1,...,X_N$ is

$$E(R, \mathbf{T}, \mathbf{X}_1, ..., \mathbf{X}_N) = \sum_{j=1}^{N} \left(\|\mathbf{x}_1^j - \pi(\mathbf{X}_j)\|^2 + \|\mathbf{x}_2^j - \pi(R\mathbf{X}_j + \mathbf{T})\|^2 \right)$$

- (a) What dimension does the space of unknown variables have if ...
 - ... R is restricted to a rotation about the camera's y-axis?
 - ... the camera is only rotated, not translated?
 - ... the points X_j are known to all lie on one plane?

In contrast to the projection error, the 8-point algorithm decouples the rigid body motion from the coordinates X_j .

- (b) Which constrained optimization problem does the 8-point algorithm solve? Write down a cost function $E_{8\text{-pt}}(R,\mathbf{T})$ and according constraints using \mathbf{x}_1^j , \mathbf{x}_2^j , R and \mathbf{T} .
- (c) Can the 8-point algorithm be used if ...
 - ... R is restricted to a rotation about the camera's y-axis?
 - ... the camera is only rotated, not translated?
 - ... the points \mathbf{X}_j are known to all lie on one plane?

Part II: Practical Exercises

This exercise is to be solved during the tutorial.

1. The Structure Tensor

In order to be able to detect corners in an image and compute optical flow, the structure tensor M shall be computed in this exercise. Write a function [M11, M12, M22] = getM(I, sigma) that computes the entries of the structure tensor M (see Theory, Ex.1(a)) for every pixel (x, y) of an image I. Proceed as follows:

- (a) Compute the image gradients I_x and I_y using central differences.
- (b) As weighting function use a two-dimensional Gaussian Kernel with a standard deviation σ (see Exercise Sheet 1). Use a kernel size (and hence integration window size) $k = 2 \cdot 2\sigma + 1$.
- (c) Use the result from Theory, Ex.1(a) and the Matlab function conv2 to compute M11, M12 and M22. Why is it not necessary to compute M21?

2. Corner Detection

In this exercise you will implement the Harris corner detector. Download ex5.zip and extract its content.

- (a) Fill in the first missing part in getHarrisCorners.m: compute the scoring function $C := \det(M) \kappa \operatorname{trace}^2(M)$ for each pixel (x,y).
- (b) Fill in the second part: visualize the scoring function. It is a good idea to display a non-linearly transformed scoring function, e.g. $sign(C) \cdot |C|^{\frac{1}{4}}$.
- (c) Complete getHarrisCorners.m: find all pixels (x,y) for which $C(x,y) > \theta$, and which are a local maximum of the scoring function, i.e. all four adjacent pixel have a lower score (non-maximum suppression).
- (d) Run getHarrisCorners for imgl.png with $\sigma=2, \kappa=0.05$ and $\theta=10^{-7}$. Display the found corners using the provided function drawPts.
- (e) Try different values for σ . What do you observe?

3. Optical Flow

In this exercise you will implement the Lucas-Kanade method to compute optical flow. To this end, complete the missing parts in getFlow.m.

- (a) Write a function [M11, M12, M22, q1, q2] = getMq(I1, I2, sigma) that computes the entries of the structure tensor M as well as the vector \mathbf{q} for every pixel (x,y). The easiest way to do this is to copy getM.m and modify it accordingly.
- (b) Compute the local velocity (v_x, v_y) of each pixel using the formula derived in Theory, Ex.1(a). Use the results from Theory Ex.1(c) to avoid loops and thus make your code efficient.
- (c) Run getFlow for the two images img1.png and img2.png and $\sigma = 2$.
- (d) Create a figure with three subplots. Visualize the two velocities separately using imagesc. In the third subplot, display a quiver plot of the velocities. Use help quiver if you do not know the syntax.
- (e) Again, try different values for σ . What do you observe now?