Co
Multi

mputer Vision I

dle View Geometry

Exercise 8: Direct Image Alignment

Mohammed Brahimi, David Schubert

July 3, 2019

@ TLTI

@ TLTI

« ="Direct Tracking" / "“Dense Tracking” / “Dense Visual Odometry”
« ="Lucas-Kanade Tracking on SE(3)"

Direct Image Alignment

reference image
\ 4 i

Camera
pose &

new image

Slides based on slides by R. Maier 2016

- = TUTI
Keypoints, Direct, Sparse, Dense

Feature-Based Direct

I Input]

e A NI NN
K oy i

Extract & Match

Features
(SIFT/SURF/ ...)

J—L' NG
abstract image to feature observations keep full images (no abstraction)
Track: g , Track:
-4\
min. reprOJectlon CITOr | . (f\. min. photometric error
(point distances P e S (intensity dlltcrcncu.)
E)(’ \ Y) “ ,.,:.;."'."4. "'*3('» : ') 3 3 'l; ”
(€ J) T ("' 'l f
~ Map: e Map
est. feature-parameters << | est. per-pixel depth
(3D points / normals) —‘415 . (semi-dense depth map)

« Sparse: use a small set of selected pixels (keypoints)

« Dense: use all (valid) pixels
Slides based on slides by R. Maier 2016

 THTI

Sparse Keypoint-based Visual Odometry

Extract and match
1 keypoints

Determine relative
camera pose (R, t)
from keypoint matches

Slides based on slides by R. Maier 2016

@ TLTI

Dense Direct Image Alignment

« Known pixel depth - "simulate” RGB-D image from
different view point

« |deally: warped image = image taken from that pose:
L(z(&, %)) = L;(x;)

« RGB-D: depth available —
find camera motion!

» Motion representation using |
the SE(3) Lie algebra Iy

« Non-linear least squares
optimization

Slides based on slides by R. Maier 2016

Minimization of photometric error; T TI.ITI
Normally distributed residuals

2

E(/‘f) = z r; ()% = z (12 (z(&, %) — 11(Xi))
i [k J k J
czr;w:era ;Y;/r new ;(mage referencYe image

valid pixels

w(€x) =7 (7 (9 (n 21x0))

n(%) = (f’;—x+cx fy7y+cy)

T

\ 7(&,%x;) warps a pixel from

7 ((;)z> = (Z(x —o) 2 —c) z> reference image to new image

fx fy

Slides based on slides by R. Maier 2016

@ TLTI

Gauss-Newton optimization

E© =Y n®? =y (Lx)) - L))

l l

« Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):

§106 = log(eXp(i) ' eXP(S?z))V #8208 F 61+ 6

« Intuition: iteratively solve for VE(¢) = 0 by
approximating VE () linearly (i.e. by approximating
E (&) quadratically)

 Using coarse-to-fine pyramid approach

Slides based on slides by R. Maier 2016

@ TLTI

Gauss-Newton optimization

B =Y =Y (L(tEx)) - hx))’

l l

In every iteration k + 1 linearize r on manifold around current pose &®:

or(e o £
1@ ~1(50) + T e gy
~———— N €] E:Q ~ y _
I'Oean]rERnX6 6%’

Solve for VE(¢§) = 0
2
E) = ||ro + Ji - 8¢, = ro ro + 28; i ¥o + 87 I) S
VE@) =2/{ro+ 2/ 16: =0 = 6 =~-0;) i1
App|y €(k+1) — 55 o f(k)

lterate (until convergence)
Slides based on slides by R. Maier 2016

Gauss-Newton optimization

B =Y =Y (L(tEx)) - hx))’

[[

Jacobian J,.: partial derivatives
Gradient of residual (1x6 row of J,.):

dr;(€ 0 1)

X x'y . X ,
1 1 0 —— —-—— zZ+— -y
=_,(VIxfx Vlyfy) ‘ ‘ 2 z
de €e=0 YA y’ y’ x’y’
01 —= -z —= , x'
Z Z
with
xl
« transformed 3d point | y’ :=T(g(f(")),n‘l(xi,zi(xi)))
ZI

- theimage gradient (VL. VI,)T of I, evaluated at warped point x; := 7(§%, x;)

Slides based on slides by R. Maier 2016

= TUTI

Coarse-to-Fine

« Adapt size of the neighborhood from coarse to fine

Coarse motion

A

A

A4

A

Fine motion

Slides based on slides by R. Maier 2016

@ TLTI

Coarse-to-Fine

« Minimize for down-scaled image (e.g. factor 8, 4, 2, 1) and use result as
initialization for next finer level

» Elegant formulation: Downscale image and adjust K accordingly
— Downscale by factor of 2 (e.g. 640x480 -> 320x240)
— Adjust camera matrix elements f,, f,, ¢, and cy:

1 4 1y 1
(1+1) Efxo ’ ECD(C) 4
K= tew Lo 1
27y 2% Ty

0 0 1

— Assumes continuous coordinate of a discrete pixel is at its center, i.e. the
top-left pixel-center has continuous coordinates (0,0)

Slides based on slides by R. Maier 2016

@ TLTI

Final Algorithm

g(o) —0
k=0
for level=3 ... 1
compute down-scaled images & depthmaps (factor =2'°v¢!)
compute down-scaled K (factor = 2'¢vel)
fori=1..20
compute Jacobian J, € R"*°

compute update
apply update 5(7“‘1) = ¢ 0 g(k)
k++; maybe break early if 56 too small or if residual increased

done
done
+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm

Slides based on slides by R. Maier 2016

