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« ="Direct Tracking" / "“Dense Tracking” / “Dense Visual Odometry”
« ="Lucas-Kanade Tracking on SE(3)"

Direct Image Alignment
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« Sparse: use a small set of selected pixels (keypoints)

« Dense: use all (valid) pixels
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Sparse Keypoint-based Visual Odometry

Extract and match
1 keypoints

Determine relative
camera pose (R, t)
from keypoint matches
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Dense Direct Image Alignment

« Known pixel depth - "simulate” RGB-D image from
different view point

« |deally: warped image = image taken from that pose:
L(z(&, %)) = L;(x;)

« RGB-D: depth available —
find camera motion!

» Motion representation using |
the SE(3) Lie algebra Iy

« Non-linear least squares
optimization
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Minimization of photometric error; T TI.ITI
Normally distributed residuals
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Gauss-Newton optimization

E© =Y n®? =y (Lx)) - L))

l l

« Solved with Gauss-Newton algorithm using left-
multiplicative increments on SE(3):

§106 = log(eXp(i) ' eXP(S?z))V #8208 F 61+ 6

« Intuition: iteratively solve for VE(¢) = 0 by
approximating VE () linearly (i.e. by approximating
E (&) quadratically)

 Using coarse-to-fine pyramid approach
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Gauss-Newton optimization

B =Y =Y (L(tEx)) - hx))’

l l

In every iteration k + 1 linearize r on manifold around current pose &®:
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lterate (until convergence)
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Gauss-Newton optimization

B =Y =Y (L(tEx)) - hx))’
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Jacobian J,.: partial derivatives
Gradient of residual (1x6 row of J,. ):
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- theimage gradient (VL.  VI,)T of I, evaluated at warped point x; := 7(§%, x;)
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Coarse-to-Fine

« Adapt size of the neighborhood from coarse to fine

Coarse motion
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Coarse-to-Fine

« Minimize for down-scaled image (e.g. factor 8, 4, 2, 1) and use result as
initialization for next finer level

» Elegant formulation: Downscale image and adjust K accordingly
— Downscale by factor of 2 (e.g. 640x480 -> 320x240)
— Adjust camera matrix elements f,, f,, ¢, and cy:

1 4 1y 1
(1+1) Efxo ’ ECD(C) 4
K= tew Lo 1
27y 2% Ty

0 0 1

— Assumes continuous coordinate of a discrete pixel is at its center, i.e. the
top-left pixel-center has continuous coordinates (0,0)
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Final Algorithm

g(o) —0
k=0
for level=3 ... 1
compute down-scaled images & depthmaps (factor =2'°v¢! )
compute down-scaled K (factor = 2'¢vel)
fori=1..20
compute Jacobian J, € R"*°

compute update
apply update 5(7“‘1) = ¢ 0 g(k)
k++; maybe break early if 56 too small or if residual increased

done
done
+ robust weights (e.g. Huber), see iteratively reweighted least squares
+ Levenberg-Marquad (LM) Algorithm
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