Multiple View Geometry: Solution Sheet 4

Prof. Dr. Daniel Cremers, David Schubert, Mohammed Brahimi
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2019/mvg2019

Exercise: June 5th, 2019

Part I: Theory

1. Image Formation

(a) Compute λ and show that (2) is equivalent to

$$
u=\frac{f X}{Z}+o_{x}, \quad v=\frac{f Y}{Z}+o_{y}
$$

Performing the matrix multiplication in (2), one obtains

$$
\left(\begin{array}{c}
\lambda u \\
\lambda v \\
\lambda
\end{array}\right)=\left(\begin{array}{c}
f X+o_{x} Z \\
f Y+o_{y} Z \\
Z
\end{array}\right)
$$

From the third row, it directly follows that $\lambda=Z$. Substituting Z for λ and dividing the equation by Z, one immediately obtains the result.
(b) A classic ambiguity of the perspective projection is that one cannot tell an object from another object that is exactly twice as big but twice as far. Explain why this is true.
Let $\tilde{\mathbf{X}}_{1}=\left(X_{1} Y_{1} Z_{1}\right)^{\top}$ be a point on the smaller object and $\tilde{\mathbf{X}}_{2}=\left(X_{2} Y_{2} Z_{2}\right)^{\top}$ a point on the larger object. Since $\tilde{\mathbf{X}}_{2}$ is twice as far away, we have $Z_{2}=2 Z_{1}$, and since it is twice as big we have $X_{2}=2 X_{1}$ and $Y_{2}=2 Y_{1}$. Thus,

$$
u_{2}=\frac{f X_{2}}{Z_{2}}+o_{x}=\frac{2 f X_{1}}{2 Z_{1}}+o_{x}=\frac{f X_{1}}{Z_{1}}+o_{x}=u_{1}
$$

and analogous for $v_{2}=v_{1}$.
(c) For a camera with $f=540, o_{x}=320$ and $o_{y}=240$, compute the pixel coordinates u and v of a point $\tilde{\mathbf{X}}=\left(\begin{array}{ll}60100180\end{array}\right)^{\top}$.

$$
\begin{aligned}
& u=\frac{f X}{Z}+o_{x}=\frac{540 \cdot 60}{180}+320=500 \\
& v=\frac{f Y}{Z}+o_{y}=\frac{540 \cdot 100}{180}+240=540
\end{aligned}
$$

Explain with the help of (b) why the units of $\tilde{\mathbf{X}}$ are not needed for this task.
Using different units ($\mathrm{mm}, \mathrm{cm}, \mathrm{m}$, etc.) can be interpreted as scaling the point coordinates by a constant factor $(10,100, \ldots)$. The argument of (b) for a factor of 2 can easily be generalized to any factor α.
Will the projected point be in the image if it has dimensions 640×480 ?
No, the point $(u, v)=(500,540)$ is not in $[-0.5,639.5] \times[-0.5,479.5]$.
(d) Using the generic projection π, show that (3) — and therefore also (1) and (2) — is equivalent to

$$
\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right)=K\binom{\pi(\tilde{\mathbf{X}})}{1}
$$

Insert in the RHS of the equation:

$$
\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right)=K\binom{\pi(\tilde{\mathbf{X}})}{1}=\left(\begin{array}{ccc}
f & 0 & o_{x} \\
0 & f & o_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
X / Z \\
Y / Z \\
1
\end{array}\right)=\left(\begin{array}{c}
f X / Z+o_{x} \\
f Y / Z+o_{y} \\
1
\end{array}\right)
$$

2. Radial Distortion

(a) Can this model be used for lenses with a field of view of more than 180° ?

No, it can only model points for which the viewing ray intersects the image plane. Since points are first projected on the canonical iamge plane with $\pi(\tilde{\mathbf{X}})$ there is a singularity at $Z=0\left(\right.$ which is $\left.180^{\circ}\right)$.
Note: It is possible to rewrite the FOV model to avoid the division by Z and apply it to lenses with more than $180^{\circ} \mathrm{FOV}$.
(b) Derive a closed form solution for f in the undistortion formula

$$
\pi(\tilde{\mathbf{X}})=f\left(\left\|\pi_{d}(\tilde{\mathbf{X}})\right\|\right) \cdot \pi_{d}(\tilde{\mathbf{X}})
$$

using (4) and $g(r)=g_{\text {ATAN }}(r)$.
Define $r:=\|\pi(\tilde{\mathbf{X}})\|$ and $r_{d}:=\left\|\pi_{d}(\tilde{\mathbf{X}})\right\|$. The norms of (4) and (6) are:

$$
r=f\left(r_{d}\right) r_{d} \quad \text { and } \quad r_{d}=g(r) r
$$

Inserting $g=g_{\text {ATAN }}$ yields

$$
\begin{gathered}
r_{d}=\frac{1}{\omega r} \arctan \left(2 r \tan \left(\frac{\omega}{2}\right)\right) r=\frac{1}{\omega} \arctan \left(2 r \tan \left(\frac{\omega}{2}\right)\right) \\
\Rightarrow \tan \left(r_{d} \omega\right)=2 r \tan \left(\frac{\omega}{2}\right) \\
\Rightarrow r=\frac{\tan \left(r_{d} \omega\right)}{2 \tan \left(\frac{\omega}{2}\right)}=f\left(r_{d}\right) r_{d} \Rightarrow f\left(r_{d}\right)=\frac{\tan \left(r_{d} \omega\right)}{2 r_{d} \tan \left(\frac{\omega}{2}\right)}
\end{gathered}
$$

