Multiple View Geometry: Solution Sheet 9

Prof. Dr. Daniel Cremers, David Schubert, Mohammed Brahimi
Computer Vision Group, TU Munich
http://vision.in.tum.de/teaching/ss2019/mvg2019

Exercise: July 10th, 2019

Part I: Theory

1. Robust Least Squares

(a) What situations can you think of where a robust loss function might be needed?

Missing (i.e. black or white) pixels in the image, dynamic changes of the scene, nonLambertian surfaces like shiny or transparent objects, (local) changes in lighting conditions, ...
(b) Write down the weight function for the Huber loss.

$$
w_{\delta}(t)= \begin{cases}1 & |t| \leq \delta \\ \frac{\delta}{|t|} & \text { else }\end{cases}
$$

2. Optimization Techniques

Write down the update step $\Delta \xi$ for each of the following minimization methods:
(a) Gradient descent, normal least squares,

$$
\Delta \xi=-\lambda J^{\top} \mathbf{r}
$$

(b) Gradient descent, weighted least squares,

$$
\Delta \xi=-\lambda J^{\top} W \mathbf{r}
$$

(c) Gauss-Newton, normal least squares,

$$
\Delta \xi=-\left(J^{\top} J\right)^{-1} J^{\top} \mathbf{r}
$$

(d) Gauss-Newton, weighted least squares,

$$
\Delta \xi=-\left(J^{\top} W J\right)^{-1} J^{\top} W \mathbf{r}
$$

(e) Levenberg-Marquardt, normal least squares,

$$
\Delta \xi=-\left(J^{\top} J+\lambda \operatorname{diag}\left(J^{\top} J\right)\right)^{-1} J^{\top} \mathbf{r}
$$

(f) Levenberg-Marquardt, weighted least squares.

$$
\Delta \xi=-\left(J^{\top} W J+\lambda \operatorname{diag}\left(J^{\top} W J\right)\right)^{-1} J^{\top} W \mathbf{r}
$$

Note : for normal least square, updates are explained in chapter 7.
For weighted least square, we can use a change of variable to write the optimization problem exactly as a normal least square :

$$
\sum_{i} w\left(r_{i}\right) r_{i}(\xi)^{2}=\sum_{i}\left(\sqrt{w\left(r_{i}\right)} r_{i}(\xi)\right)^{2}=\sum_{i} \tilde{r}_{i}(\xi)^{2}=\|\tilde{r}(\xi)\|^{2}
$$

Then to get the new update steps, we just substitute r with $\tilde{r}=\sqrt{W} r$ and J with $\tilde{J}=\sqrt{W} J$ in the previous one.
(\tilde{J} is the jacobian of \tilde{r}, and \sqrt{W} is the matrix whose components are the square root of the components of W).

