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Exercise: July 10th, 2019

Part I: Theory

1. Robust Least Squares

(a) What situations can you think of where a robust loss function might be needed?
Missing (i.e. black or white) pixels in the image, dynamic changes of the scene, non-
Lambertian surfaces like shiny or transparent objects, (local) changes in lighting condi-
tions, ...

(b) Write down the weight function for the Huber loss.

wδ(t) =

{
1 |t| ≤ δ
δ
|t| else

2. Optimization Techniques

Write down the update step ∆ξ for each of the following minimization methods:

(a) Gradient descent, normal least squares,

∆ξ = −λJ>r

(b) Gradient descent, weighted least squares,

∆ξ = −λJ>Wr

(c) Gauss-Newton, normal least squares,

∆ξ = −(J>J)−1J>r

(d) Gauss-Newton, weighted least squares,

∆ξ = −(J>WJ)−1J>Wr

(e) Levenberg-Marquardt, normal least squares,

∆ξ = −(J>J + λdiag(J>J))−1J>r

(f) Levenberg-Marquardt, weighted least squares.

∆ξ = −(J>WJ + λdiag(J>WJ))−1J>Wr
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Note : for normal least square, updates are explained in chapter 7.
For weighted least square, we can use a change of variable to write the optimization problem
exactly as a normal least square :∑

i

w(ri)ri(ξ)
2 =

∑
i

(
√
w(ri)ri(ξ))

2 =
∑
i

r̃i(ξ)
2 = ‖r̃(ξ)‖2

Then to get the new update steps, we just substitute r with r̃ =
√
Wr and J with J̃ =

√
WJ in

the previous one.

(J̃ is the jacobian of r̃, and
√
W is the matrix whose components are the square root of the

components of W ).
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