

0: Introduction and Organization

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence Technical University of Munich

ТUП

General Information

PGM SS19 : 0 : Introduction and Organization

Prerequisites

- $\circ~$ (Discrete) probability theory.
- $\circ~$ (Basic) graph theory.
- Programming experience in Python (or Matlab).
- + Discrete/continuous optimization.
- + Machine learning.
- + Related courses:
 - Computer Vision I & II.
 - Machine Learning for CV.
 - Convex Optimization for CV & ML.

Outline of the Course

Representation

- Bayesian network (directed model);
- Markov network (undirected model);
- Factor graph, Exponential family.

Inference

- Exact inference: variable elimination, message passing;
- Variational inference: mean field, loopy belief propagation;
- Sampling methods: rejection/importance sampling, Gibbs sampling;
- MAP inference: Graph cut, Linear programming relaxation.

Learning

- Maximum likelihood estimation (MLE);
- Partial observation and expectation-maximization (EM) algorithm;
- Structured learning: structured support vector machine (SSVM).
- Further topics (if time permits)
 - Hidden Markov model and Kalman filter;
 - Boltzmann machines and contrastive divergence, etc.

Contact Information

- Tao's office: 02.09.061
- Yuesong's office: 02.09.039
- Zhenzhang's office: 02.09.060
- Office hours: Please write an email.
- Lecture: Starts at quarter past; Short break in between.
- Course webpage (where you check out announcements): https://vision.in.tum.de/teaching/ss2019/pgm2019
- Homework: assigned on Monday; hand in on Monday one week after.
- Bonus policy: see the course webpage.
- Submit your programming exercises per email to: pgm-ss19@vision.in.tum.de
- Passcode for accessing course materials: bayesian

PGM SS19 : 0 : Introduction and Organization

What and Why about PGM?

PGM SS19:0: Introduction and Organization

Probabilistic Graphical Model

• **Probabilistic graphical model (PGM)**, or **graphical model** for short, is a probabilistic model which uses a graph to represent dependencies among its random variables.

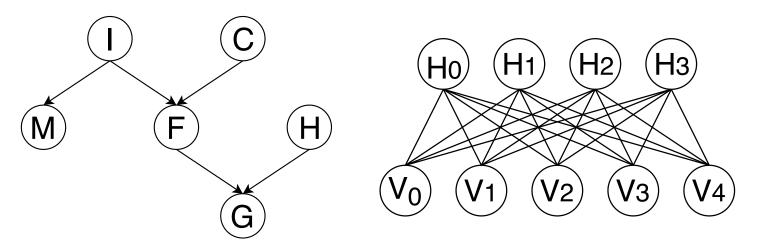
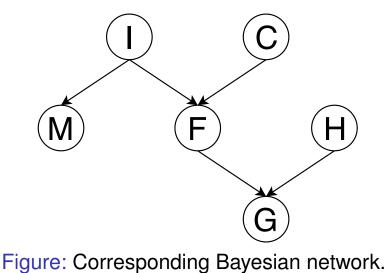


Figure: Examples of graphical models: Bayesian network (left) and Markov network (right).



Graphical Representation

- Nodes: random variables;
- Edges: interactions;
- Overall graph: joint distribution.
- → Declarative and intuitive graph representation of the probability distribution.

Random variables:

- I: interesting subject?
- C: cool professor?
- M: master thesis?
- F: follow course?
- H: hard work?
- G: good grade?

Structured Interaction

- Graph structure indicates independence assumptions.
- Example: A binary 28 \times 28 MNIST image $\rightsquigarrow |\mathcal{V}| =$ 784 binary RVs:
 - In general: $2^{|\mathcal{V}|} 1 \approx 10^{236}$ free parameters for joint distribution!
 - Full independence: $|\mathcal{V}| = 784$ free parameters;
 - Grid-structured dependence: $|\mathcal{V}| + |\mathcal{E}| = 2296$ free parameters.

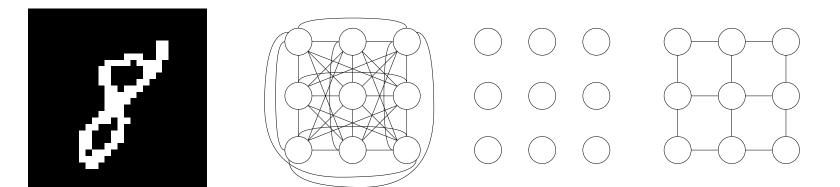
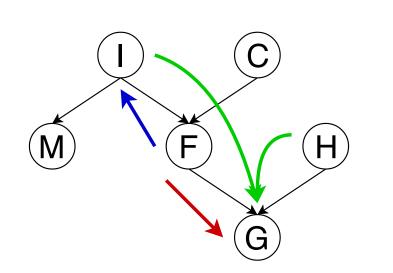


Figure: Binary MNIST image and Markov network with different independence assumptions.


Independence assumptions \leftrightarrow Factorization \leftrightarrow Tractable modeling

Inference: Reasoning with Uncertainty

- Getting info from graphical models ~> reasoning with uncertainty!
- Inference process can answer queries like:
 - How likely will I get a good grade: if I Follow the course? if I find the subject Interesting but don't want to work Hard?
 - My friend is Following this course, how likely is the subject Interesting?
 - What are the most probable values for the missing pixels?

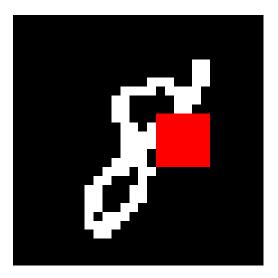


Figure: Illustration of some inference task examples

Learning: Data-driven Model Design

- Parameters and structure of a graphical model can be set ...
 - manually by human expertise and prior ~> knowledge engineering
 - automatically trained from observed data ~> machine learning

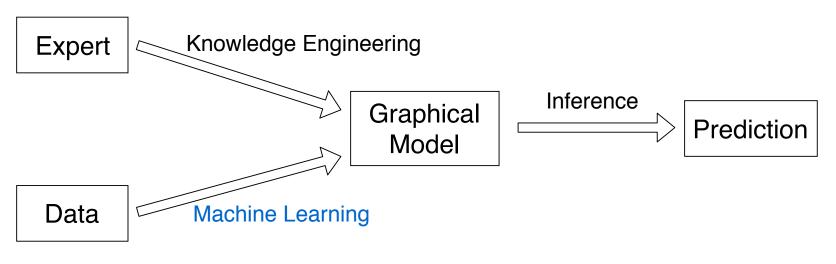


Figure: Design and usage of graphical model.

Applications

PGM SS19 : 0 : Introduction and Organization

Application: Expert System for Medical Diagnosis

• Knowledge engineering with Bayesian network.

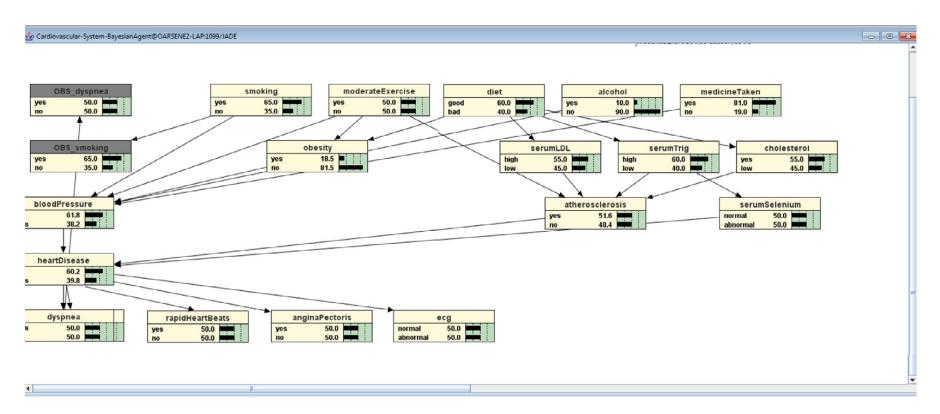


Figure: Illustration of an expert system for medical diagnosis of cardiovascular system¹.

¹Arsene et al., "Expert system for medicine diagnosis using software agents". PGM SS19 : 0 : Introduction and Organization

Application: Natural Language Processing (NLP)

· Modeling sequential data with hidden Markov model.

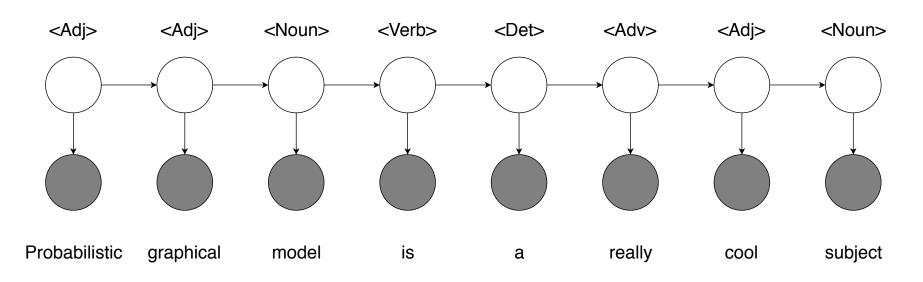


Figure: An example of part-of-speech tagging with hidden Markov model.

Application: Information Theory and Communication

- Probabilistic modeling of noisy communication channel;
- Turbo code, low-density parity check, etc. can be modeled as factor graphs;
- Belief propagation → near Shannon-limit performance²;
- Widely used for communication protocols such as 3G/4G/5G or Wi-Fi.

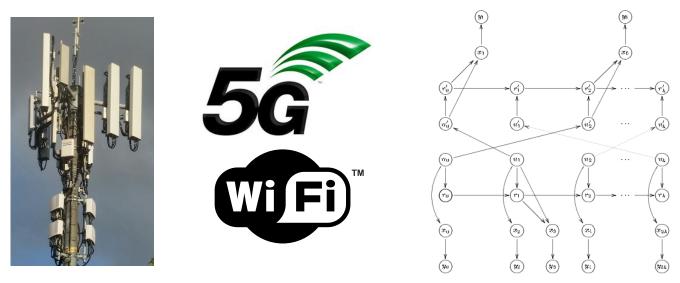


Figure: Telecommunication protocols and illustration of turbo code³⁴.

²MacKay, Information theory, inference and learning algorithms.

³https://en.wikipedia.org/wiki/Wi-Fi and https://en.wikipedia.org/wiki/5G, accessed on Feb. 20th, 2019.

⁴Lauritzen, "Some modern applications of graphical models".

PGM SS19: 0: Introduction and Organization

Application: Statistical Physics

- Modeling with Markov random field.
- Source of inspiration for various inference techniques:
- mean field, simulated annealing, generalized belief propagation, etc.

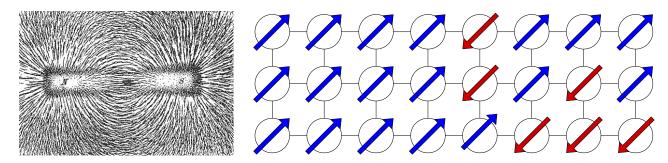


Figure: Illustration of Ising model for ferromagnet, left image from Wikipedia⁵.

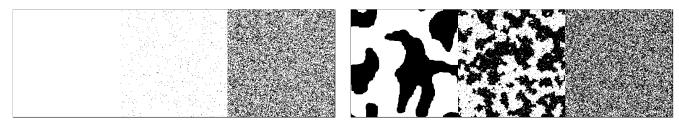


Figure: 2D Ising grid at 3 temperatures with (left) or without (right) external magnetic field⁶.

PGM SS19:0: Introduction and Organization

⁵https://en.wikipedia.org/wiki/Ising_model, accessed on Feb. 20th, 2019.

⁶Generated from https://mattbierbaum.github.io/ising.js/, accessed on Feb. 20th, 2019.

Application: Traffic Modeling and Estimation

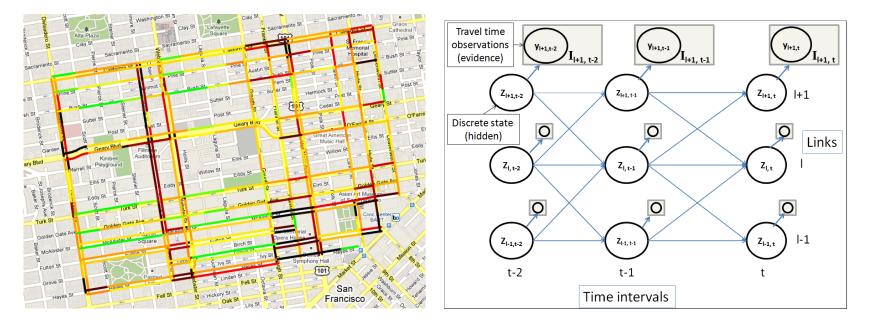


Figure: Traffic modeling and estimation with the help of coupled hidden Markov model⁷.

⁷Herring, "Real-time traffic modeling and estimation with streaming probe data using machine learning". PGM SS19 : 0 : Introduction and Organization

Applications in Computer Vision

- · Image data can be represented by Markov random field.
- Graphical model has been applied to a variety of vision tasks:

Inpainting

Super-resolution

Figure: Various examples of computer vision tasks handled by graphical model⁸.

⁸Felzenszwalb and Huttenlocher, "Efficient belief propagation for early vision"; Levin et al., "Learning how to inpaint from global image statistics"; Tappen et al., "Efficient graphical models for processing images". PGM SS19 : 0 : Introduction and Organization

Application in CV: Odometry and SLAM

• A classic algorithm for odometry and navigation: (extended) Kalman filter.

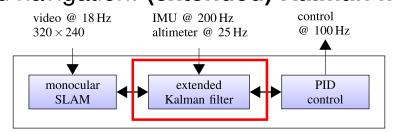


Figure: Extended Kalman filter for navigation of quadrocopter⁹.

• Useful for modeling sequential data in general (e.g. sensor fusion).

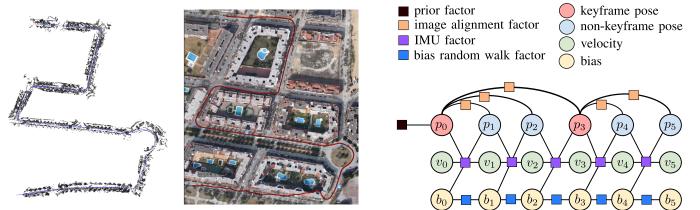


Figure: Factor graph representing the visual-inertial odometry optimization problem¹⁰.

⁹Engel et al., "Camera-Based Navigation of a Low-Cost Quadrocopter". ¹⁰Usenko et al., "Direct Visual-Inertial Odometry with Stereo Cameras". PGM SS19 : 0 : Introduction and Organization

More applications in CV

(i) Generative modeling; (ii) Structured prediction.

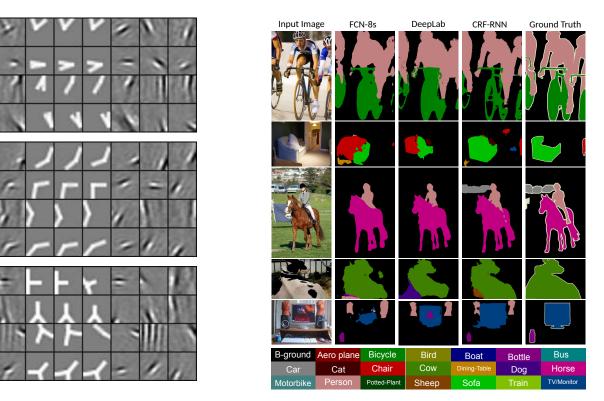


Figure: Graphical model for unsupervised learning¹¹ (left) and semantic segmentation¹² (right).

¹¹Lee et al., "Sparse Deep Belief Net Model for Visual Area V2".

¹²Zheng et al., "Conditional Random Fields As Recurrent Neural Networks".

PGM SS19:0: Introduction and Organization