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Prerequisites

o (Discrete) probability theory.
o (Basic) graph theory.

o Programming experience in Python (or Matlab).
+ Discrete/continuous optimization.
+ Machine learning.

+ Related courses:

— Computer Vision | & .
— Machine Learning for CV.
— Convex Optimization for CV & ML.
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Outline of the Course

- Representation
— Bayesian network (directed model);
— Markov network (undirected model);
— Factor graph, Exponential family.
. Inference
— Exact inference: variable elimination, message passing;
— Variational inference: mean field, loopy belief propagation;
— Sampling methods: rejection/importance sampling, Gibbs sampling;
— MAP inference: Graph cut, Linear programming relaxation.
- Learning
— Maximum likelihood estimation (MLE);
— Partial observation and expectation-maximization (EM) algorithm;
— Structured learning: structured support vector machine (SSVM).
- Further topics (if time permits)
— Hidden Markov model and Kalman filter;

— Boltzmann machines and contrastive divergence, etc.
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Contact Information

- Tao’s office: 02.09.061

- Yuesong’s office: 02.09.039

- Zhenzhang’s office: 02.09.060

- Office hours: Please write an email.

. Lecture: Starts at quarter past; Short break in between.

- Course webpage (where you check out announcements):
https://vision.in.tum.de/teaching/ss2019/pgm2019

- Homework: assigned on Monday; hand in on Monday one week after.
- Bonus policy: see the course webpage.

- Submit your programming exercises per email to:
pgm-ss190vision.in.tum.de

- Passcode for accessing course materials:
bayesian
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What and Why about PGM?
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Probabilistic Graphical Model

- Probabilistic graphical model (PGM), or graphical model for short, is a
probabilistic model which uses a graph to represent dependencies among
its random variables.

G

Figure: Examples of graphical models: Bayesian network (left) and Markov network (right).
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Graphical Representation

- Nodes: random variables;
- Edges: interactions;

- Overall graph: joint distribution.

~ Declarative and intuitive graph representation of the probability distribution.

Random variables:
. |: interesting subject?
. C: cool professor?
- M: master thesis?
- F: follow course?
- H: hard work?

- G: good grade? Figure: Corresponding Bayesian network.
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Structured Interaction

- Graph structure indicates independence assumptions.

- Example: A binary 28 x 28 MNIST image ~» |#'| = 784 binary RVs:
— In general: 21”1 — 1 ~ 10236 free parameters for joint distribution!
— Full independence: | 7| = 784 free parameters;

— Grid-structured dependence: | 7| + |&| = 2296 free parameters.

Figure: Binary MNIST image and Markov network with different independence assumptions.

Independence assumption < Factorization <> Tractable modeling
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Inference: Reasoning with Uncertainty

. Getting info from graphical models ~~ reasoning with uncertainty!

- Inference process can answer queries like:
— How likely will | get a good grade: if | Follow the course? if | find the

subject Interesting but don’t want to work Hard?
— My friend is Following this course, how likely is the subject Interesting?

— What are the most probable values for the missing pixels?

D @
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Figure: lllustration of some inference task examples
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Learning: Data-driven Model Design

- Parameters and structure of a graphical model can be set ...

— manually by human expertise and prior ~~ knowledge engineering

— automatically trained from observed data ~~ machine learning

Expert Knowledge Engineering
Graphical

Inference

/ e
Data Machine Learning

Figure: Design and usage of graphical model.
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Applications
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Application: Expert System for Medical Diagnosis

- Knowledge engineering with Bayesian network.
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Figure: lllustration of an expert system for medical diagnosis of cardiovascular system’.

'arsene2015expsysmed.
PGM SS19 : Probabilistic Graphical Model: Introduction 13



’—‘ Computer Vision & Artif.icial Intelligence
Y TUTI
Application: Natural Language Processing (NLP)

- Modeling sequential data with hidden Markov model.

<Adj> <Adj> <Noun> <Verb> <Det> <Adv> <Adj> <Noun>

Probabilistic  graphical model is a really cool subject

Figure: An example of part-of-speech tagging with hidden Markov model.
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Application: Information Theory and Communication

- Probabilistic modeling of noisy communication channel;

. Turbo code, low-density parity check, etc. can be modeled as factor graphs;
. Belief propagation ~+ near Shannon-limit performance?;

- Widely used for communication protocols such as 3G/4G/5G or Wi-Fi.
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Figure: Telecommunication protocols and illustration of turbo code®4.

°mackay2003information.
Shttps://en.wikipedia.org/wiki/Wi-Fi and https://en.wikipedia.org/wiki/5G, accessed on Feb. 20th, 2019.

“lauritzen2003gmapplication.
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Application: Statistical Physics

- Modeling with Markov random field.

- Source of inspiration for various inference techniques:
mean field, simulated annealing, generalized belief propagation, etc.

Figure: lllustration of Ising model for ferromagnet, left image from Wikipedia®.

:%' 3 ] o2 = U'ﬁ“

Figure: 2D Ising grid at 3 temperatures with (left) or without (right) external magnetic field®.

Shttps://en.wikipedia.org/wiki/Ising_model, accessed on Feb. 20th, 2019.

6Generated from https://mattbierbaum.github.io/ising. js/, accessed on Feb. 20th, 2019.
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Figure: Traffic modeling and estimation with the help of coupled hidden Markov model”.

"herring2010gmtraffic.
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Applications in Computer Vision

- Image data can be represented by Markov random field.
- Graphical model has been applied to a variety of vision tasks:

Denoising

Optical flow Stereo matching

Figure: Various examples of computer vision tasks handled by graphical model®.

8telzenszwalb2006efficient; levin2003learning; tappen2004efficient.
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Application in CV: Odometry and SLAM

- A classic algorithm for odometry and navigation: (extended) Kalman filter.

video @ 18Hz IMU @ 200Hz control
320 x 240 altimeter @ 25 Hz @ 100Hz
| | A
v v

monocular extended PID
SLAM > Kalman filter > control

Figure: Extended Kalman filter for navigation of quadrocopter®.

- Useful for modeling sequential data in general (e.g. sensor fusion).

m—y W prior factor O keyframe pose

A [0 image alignment factor  (T) non-keyframe pose
B IMU factor (O velocity

M bias random walk factor O bias

Figure: Factor graph representing the visual-inertial odometry optimization problem©.

Sengel12iros.

Ousenko16icra.
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M licati in CV

(i) Generative modeling; (ii) Structured prediction.

Input Image FCN-8s DeepLab CRF-RNN Ground Truth
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B-ground |Aero plane Bicycle Bird Boat Bottle
Car Cat Chair Cow Dining-Table Dog Horse
Motorbike Person Potted-Plant Sheep Sofa Train TV/Monitor

Figure: Graphical model for unsupervised learning' (left) and semantic segmentation'? (right).

Lee2007sdb.

12zheng2015ctrf.
PGM SS19 : Probabilistic Graphical Model: Introduction 20



	General Information
	What and Why about PGM?
	Applications

