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Probability S

A probability space is a triplet (€2, F, P) consisting of:

. a sample/state space {2 — an arbitrary non-empty set.
.- a o-algebra — a set of subsets (called events) of Q2 s.t.
— Qe F.
— JF is closed under complements:

AcF = Q\Ae F.
— JF is closed under countable unions:
(Ai)ieN cF = UA,‘ c F.
ieN
. a probability measure P : 7 — [0, 1] s.t.
— Pis o-additive: if (Aj)ieny € Q is a countable collection of pairwise disjoint

sets, then
P(JA) =D P(A).
ieEN ieN
— P(Q2) =1.

PGM SS19 : | : Recap on (Discrete) Probability Theory



Computer Vision & Artificial Intelligence
@ Department of Informatics

Technical University of Munich

Immediate Properties (as exercises)
. ) € F and P(() = 0.

. AC B = P(A) < P(B).

- P(AN B) < min(P(A), P(B)).

. P(AU B) < P(A) + P(B).

. P(Q\A) = 1 — P(A).

- If (Aj)ien € F is set of pairwise disjoint events s.t. [ ;. Ai = €, then
ZIEN 'D(Ai) = 1.
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Assume P(B) # 0. The conditional probability of event A given B is defined as
P(AN B)

PAIB) = 5 (1

. Chain rule:

P(A1 N AN ...N Ax) = P(A1)P(A2|A1)P(As| A2 N Aq)...P(Ak|Ak—1 N ... N Aq).
Proof: Recursively apply (7).

- Independence: Two events A and B are independent (A L B) iff

P(AN B) = P(A)P(B) < P(A|B) = P(A).
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Discrete vs. Continuous Probability Space

- Discrete case (sufficient for this course):
— (2 contains at most countably many elements.
— Typically, we set F = 2% (2* stands for the power set of Q).
— P is characterized by probability mass function p: Q — [0, 1]
s.t. ). cqP(w) = 1. This means:

VAEF: P(A)=) pw).

weA

. Continuous case:
— Q1 is a (possibly uncountable) measurable space.
— P is a probability measure.
— P often admits a probability density function p: 2 — [0, 1] (2 C R"),

l.e.,
VAe F: P(A) = /p(w)dw.
A
Formally, p = &€ is the Radon-Nikodym derivative of P w.r.t. the Lebesgue
measure.
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Random Variable

A random variable X on (2, F, P) is a measurable function X : Q — X s.t.
VA C X measurable : P(X € A) := P(X '(A)) = P{w € Q: X(w) € A}).
For discrete RV, it's convenient to directly work on the (discrete) output space X':

p(x) =P(X=x)= ) P)

- Expectation:

E[X] = / X(w)dP(w) (continuous)

Q
=) X(wp(w) = xp(x). (discrete)
wel X
- Covariance (X, Y are both real-valued RV):
Cov[X, Y] :=E[(X — E[X])(Y — E[Y])]
= E[XY] — E[X]E]Y].
. Variance: Var[X] := Cov[X, X].
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Simple Properties (as exercises)

Expectation:

. E[a] = a for any constant a.
- Linearity:

E[X + Y] = E[X] + E[Y],
E[laX] = «E[X]. («is a constant scalar)

Covariance:

- Cov|[X, a| = Cov|a, X]| = 0 for any constant a.
- Homogeneity:

Cov[aX, Y] = af Cov[X, Y]. («a,p are constant scalars)
- Covariance under independence X L Y-
E[XY] = E[X]E[Y] < Cov[X,Y]|=0.
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Joint, Marginal, and Conditional Probability
Let two discrete RVs X, Y be given.

Joint probability:
px,y)=P(X=x,Y =y).
Marginal probability:
p(x) =) p(x,y).
y

Conditional probability:

Conditional independence between X, Y given Z (i.e. X 1 Y| Z2) iff
p(x,y|z) = p(x|z)p(y|z) < p(x|y,z) = p(x|2).

Bayes’ rule:

py|x) =
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Example on Binary Segmentation

Consider a (simplified) binary segmentation problem:
X € {Dark, Bright}, Y € {Foreground, Background}.

p(x,y) | Dark Bright| p(y)
Foreground | 0.163 0.006 | 0.169

Background | 0.116 0.715|0.831
p(x) 0.279 0.721

Figure: Probability Table for Binary Segmentation.

. Conditional probability via joint probability:

P(X = Dark, Y = Foregr.) 0.163

P(Y = Foregr.|X = Dark) = = ——— = 0.584.
( r-|X = Dark) P(X = Dark) 0279 OF
. Conditional probability via Bayes’ rule:
P(Y=F |X = Dark —
P(X = Dark|Y = Foregr.) = ( oregr| ark) P(X = Dark)
P(Y = Foregr.)
584 -0.27
= 0.584-0.279 = 0.964.
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