

I: Recap on (Discrete) Probability Theory

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence Technical University of Munich

Probability Space

A **probability space** is a triplet (Ω, \mathcal{F}, P) consisting of:

- a sample/state space Ω an arbitrary non-empty set.
- a σ -algebra a set of subsets (called events) of Ω s.t.
 - $-\Omega\in\mathcal{F}$.
 - \mathcal{F} is closed under complements:

$$A \in \mathcal{F} \Rightarrow \Omega \backslash A \in \mathcal{F}.$$

 $-\mathcal{F}$ is closed under countable unions:

$$(A_i)_{i\in\mathbb{N}}\in\mathcal{F} \Rightarrow \bigcup_{i\in\mathbb{N}}A_i\in\mathcal{F}.$$

- a probability measure $P: \mathcal{F} \rightarrow [0, 1]$ s.t.
 - P is σ -additive: if $(A_i)_{i\in\mathbb{N}}\in\Omega$ is a countable collection of *pairwise disjoint* sets, then

$$P(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}P(A_i).$$

$$-P(\Omega)=1.$$

Immediate Properties (as exercises)

- $\emptyset \in \mathcal{F}$ and $P(\emptyset) = 0$.
- $A \subset B \Rightarrow P(A) \leq P(B)$.
- $P(A \cap B) \leq \min(P(A), P(B))$.
- $P(A \cup B) \leq P(A) + P(B)$.
- $P(\Omega \backslash A) = 1 P(A)$.
- If $(A_i)_{i\in\mathbb{N}}\in\mathcal{F}$ is set of pairwise disjoint events s.t. $\bigcup_{i\in\mathbb{N}}A_i=\Omega$, then $\sum_{i\in\mathbb{N}}P(A_i)=1$.

Conditional Probability

Assume $P(B) \neq 0$. The **conditional probability** of event A given B is defined as

$$P(A|B) := \frac{P(A \cap B)}{P(B)}.$$
 (†)

Chain rule:

$$P(A_1 \cap A_2 \cap ... \cap A_k) = P(A_1)P(A_2|A_1)P(A_3|A_2 \cap A_1)...P(A_k|A_{k-1} \cap ... \cap A_1).$$

Proof: Recursively apply (†).

• Independence: Two events A and B are independent $(A \perp B)$ iff

$$P(A \cap B) = P(A)P(B) \Leftrightarrow P(A|B) = P(A).$$

Discrete vs. Continuous Probability Space

- Discrete case (sufficient for this course):
 - $-\Omega$ contains at most countably many elements.
 - Typically, we set $\mathcal{F}=2^{\Omega}$ (2^{Ω} stands for the power set of Ω).
 - − *P* is characterized by **probability mass function** $p: Ω \to [0, 1]$ s.t. $\sum_{\omega \in Ω} p(\omega) = 1$. This means:

$$\forall A \in \mathcal{F} : P(A) = \sum_{\omega \in A} p(\omega).$$

- Continuous case:
 - $-\Omega$ is a (possibly uncountable) *measurable space*.
 - − P is a probability measure.
 - − *P* often admits a **probability density function** $p : \Omega \rightarrow [0, 1]$ (Ω ⊂ \mathbb{R}^n), i.e.,

$$\forall A \in \mathcal{F}: P(A) = \int_A p(\omega) d\omega.$$

Formally, $p = \frac{dP}{d\omega}$ is the *Radon-Nikodym derivative* of *P* w.r.t. the Lebesgue measure.

Random Variable

A random variable X on (Ω, \mathcal{F}, P) is a measurable function $X : \Omega \to \mathcal{X}$ s.t.

$$\forall A \subset \mathcal{X} \text{ measurable} : P(X \in A) := P(X^{-1}(A)) = P(\{\omega \in \Omega : X(\omega) \in A\}).$$

For discrete RV, it's convenient to directly work on the (discrete) output space \mathcal{X} :

$$p(x) := P(X = x) = \sum_{\omega: X(\omega) = x} P(\omega).$$

Expectation:

$$\mathbb{E}[X] := \int_{\Omega} X(\omega) dP(\omega) \qquad \text{(continuous)}$$

$$= \sum_{\omega \in \Omega} X(\omega) p(\omega) = \sum_{x} x p(x). \qquad \text{(discrete)}$$

Covariance (X, Y are both real-valued RV):

$$Cov[X, Y] := \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

= $\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y].$

• Variance: Var[X] := Cov[X, X].

Simple Properties (as exercises)

Expectation:

- $\mathbb{E}[a] = a$ for any constant a.
- · Linearity:

$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y],$$

$$\mathbb{E}[\alpha X] = \alpha \mathbb{E}[X]. \quad (\alpha \text{ is a constant scalar})$$

Covariance:

- Cov[X, a] = Cov[a, X] = 0 for any constant a.
- Homogeneity:

$$Cov[\alpha X, \beta Y] = \alpha \beta Cov[X, Y].$$
 (α, β are constant scalars)

• Covariance under independence $X \perp Y$:

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \quad \Leftrightarrow \quad \mathsf{Cov}[X,Y] = 0.$$

Joint, Marginal, and Conditional Probability

Let two discrete RVs X, Y be given.

Joint probability:

$$p(x, y) = P(X = x, Y = y).$$

Marginal probability:

$$p(x) = \sum_{y} p(x, y).$$

Conditional probability:

$$p(x|y) = P(X = x|Y = y) = \frac{p(x,y)}{p(y)} = \frac{p(x,y)}{\sum_{x} p(x,y)}.$$

Conditional independence between X, Y given Z (i.e. $X \perp Y \mid Z$) iff

$$p(x,y|z) = p(x|z)p(y|z) \Leftrightarrow p(x|y,z) = p(x|z).$$

Bayes' rule:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}.$$

Example on Binary Segmentation

Consider a (simplified) binary segmentation problem: $X \in \{\text{Dark}, \text{Bright}\}, Y \in \{\text{Foreground}, \text{Background}\}.$

p(x, y)	Dark	Bright	p(y)
Foreground	0.163	0.006	0.169
Background	0.116	0.715	0.831
p(x)	0.279	0.721	

Figure: Probability Table for Binary Segmentation.

Conditional probability via joint probability:

$$P(Y = \text{Foregr.}|X = \text{Dark}) = \frac{P(X = \text{Dark}, Y = \text{Foregr.})}{P(X = \text{Dark})} = \frac{0.163}{0.279} = 0.584.$$

Conditional probability via Bayes' rule:

$$P(X = \text{Dark}|Y = \text{Foregr.}) = \frac{P(Y = \text{Foregr.}|X = \text{Dark})P(X = \text{Dark})}{P(Y = \text{Foregr.})}$$
$$= \frac{0.584 \cdot 0.279}{0.169} = 0.964.$$