I : Recap on (Discrete) Probability Theory

Tao Wu, Yuesong Shen, Zhenzhang Ye
Computer Vision \& Artificial Intelligence Technical University of Munich

Probability Space

A probability space is a triplet (Ω, \mathcal{F}, P) consisting of:

- a sample/state space Ω - an arbitrary non-empty set.
- a σ-algebra - a set of subsets (called events) of Ω s.t.
$-\Omega \in \mathcal{F}$.
$-\mathcal{F}$ is closed under complements:

$$
A \in \mathcal{F} \Rightarrow \Omega \backslash A \in \mathcal{F}
$$

$-\mathcal{F}$ is closed under countable unions:

$$
\left(A_{i}\right)_{i \in \mathbb{N}} \in \mathcal{F} \Rightarrow \bigcup_{i \in \mathbb{N}} A_{i} \in \mathcal{F}
$$

- a probability measure $P: \mathcal{F} \rightarrow[0,1]$ s.t.
- P is σ-additive: if $\left(A_{i}\right)_{i \in \mathbb{N}} \in \Omega$ is a countable collection of pairwise disjoint sets, then

$$
P\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=\sum_{i \in \mathbb{N}} P\left(A_{i}\right) .
$$

$-P(\Omega)=1$.

Immediate Properties (as exercises)

- $\emptyset \in \mathcal{F}$ and $P(\emptyset)=0$.
- $A \subset B \Rightarrow P(A) \leq P(B)$.
- $P(A \cap B) \leq \min (P(A), P(B))$.
- $P(A \cup B) \leq P(A)+P(B)$.
- $P(\Omega \backslash A)=1-P(A)$.
- If $\left(A_{i}\right)_{i \in \mathbb{N}} \in \mathcal{F}$ is set of pairwise disjoint events s.t. $\bigcup_{i \in \mathbb{N}} A_{i}=\Omega$, then $\sum_{i \in \mathbb{N}} P\left(A_{i}\right)=1$.

Conditional Probability

Assume $P(B) \neq 0$. The conditional probability of event A given B is defined as

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)}
$$

- Chain rule:
$P\left(A_{1} \cap A_{2} \cap \ldots \cap A_{k}\right)=P\left(A_{1}\right) P\left(A_{2} \mid A_{1}\right) P\left(A_{3} \mid A_{2} \cap A_{1}\right) \ldots P\left(A_{k} \mid A_{k-1} \cap \ldots \cap A_{1}\right)$.
Proof: Recursively apply (\dagger).
- Independence: Two events A and B are independent $(A \perp B)$ iff

$$
P(A \cap B)=P(A) P(B) \Leftrightarrow P(A \mid B)=P(A) .
$$

Discrete vs. Continuous Probability Space

- Discrete case (sufficient for this course):
- Ω contains at most countably many elements.
- Typically, we set $\mathcal{F}=2^{\Omega}$ (2^{Ω} stands for the power set of Ω).
- P is characterized by probability mass function $p: \Omega \rightarrow[0,1]$ s.t. $\sum_{\omega \in \Omega} p(\omega)=1$. This means:

$$
\forall A \in \mathcal{F}: P(A)=\sum_{\omega \in A} p(\omega) .
$$

- Continuous case:
$-\Omega$ is a (possibly uncountable) measurable space.
- P is a probability measure.
- P often admits a probability density function $p: \Omega \rightarrow[0,1]\left(\Omega \subset \mathbb{R}^{n}\right)$, i.e.,

$$
\forall A \in \mathcal{F}: P(A)=\int_{A} p(\omega) d \omega .
$$

Formally, $p=\frac{d P}{d \omega}$ is the Radon-Nikodym derivative of P w.r.t. the Lebesgue measure.

Random Variable

A random variable X on (Ω, \mathcal{F}, P) is a measurable function $X: \Omega \rightarrow \mathcal{X}$ s.t.
$\forall A \subset \mathcal{X}$ measurable : $P(X \in A):=P\left(X^{-1}(A)\right)=P(\{\omega \in \Omega: X(\omega) \in A\})$.
For discrete RV , it's convenient to directly work on the (discrete) output space \mathcal{X} :

$$
p(x):=P(X=x)=\sum_{\omega: X(\omega)=x} P(\omega) .
$$

- Expectation:

$$
\begin{array}{rlr}
\mathbb{E}[X] & :=\int_{\Omega} X(\omega) d P(\omega) \\
& =\sum_{\omega \in \Omega} X(\omega) p(\omega)=\sum_{x} x p(x) .
\end{array}
$$

- Covariance (X, Y are both real-valued RV):

$$
\begin{aligned}
\operatorname{Cov}[X, Y]: & =\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& =\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y] .
\end{aligned}
$$

- Variance: $\operatorname{Var}[X]:=\operatorname{Cov}[X, X]$.

Simple Properties (as exercises)

Expectation:

- $\mathbb{E}[a]=a$ for any constant a.
- Linearity:

$$
\begin{aligned}
\mathbb{E}[X+Y] & =\mathbb{E}[X]+\mathbb{E}[Y], \\
\mathbb{E}[\alpha X] & =\alpha \mathbb{E}[X] . \quad(\alpha \text { is a constant scalar })
\end{aligned}
$$

Covariance:

- $\operatorname{Cov}[X, a]=\operatorname{Cov}[a, X]=0$ for any constant a.
- Homogeneity:

$$
\operatorname{Cov}[\alpha X, \beta Y]=\alpha \beta \operatorname{Cov}[X, Y] . \quad(\alpha, \beta \text { are constant scalars })
$$

- Covariance under independence $X \perp Y$:

$$
\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y] \quad \Leftrightarrow \quad \operatorname{Cov}[X, Y]=0 .
$$

Joint, Marginal, and Conditional Probability

Let two discrete RVs X, Y be given.
Joint probability:

$$
p(x, y)=P(X=x, Y=y) .
$$

Marginal probability:

$$
p(x)=\sum_{y} p(x, y) .
$$

Conditional probability:

$$
p(x \mid y)=P(X=x \mid Y=y)=\frac{p(x, y)}{p(y)}=\frac{p(x, y)}{\sum_{x} p(x, y)} .
$$

Conditional independence between X, Y given Z (i.e. $X \perp Y \mid Z$) iff

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z) \Leftrightarrow p(x \mid y, z)=p(x \mid z) .
$$

Bayes' rule:

$$
p(y \mid x)=\frac{p(x \mid y) p(y)}{p(x)} .
$$

Example on Binary Segmentation

Consider a (simplified) binary segmentation problem: $X \in\{$ Dark, Bright $\}, Y \in\{$ Foreground, Background $\}$.

$p(x, y)$	Dark	Bright	$p(y)$
Foreground	0.163	0.006	0.169
Background	0.116	0.715	0.831
$p(x)$	0.279	0.721	

Figure: Probability Table for Binary Segmentation.

- Conditional probability via joint probability:

$$
P(Y=\text { Foregr. } \mid X=\text { Dark })=\frac{P(X=\text { Dark, } Y=\text { Foregr. })}{P(X=\text { Dark })}=\frac{0.163}{0.279}=0.584 .
$$

- Conditional probability via Bayes' rule:

$$
\begin{aligned}
P(X=\text { Dark } \mid Y=\text { Foregr. }) & =\frac{P(Y=\text { Foregr. } \mid X=\text { Dark }) P(X=\text { Dark })}{P(Y=\text { Foregr. })} \\
& =\frac{0.584 \cdot 0.279}{0.169}=0.964 .
\end{aligned}
$$

