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Probability Space
A probability space is a triplet (Ω,F ,P) consisting of:

• a sample/state space Ω — an arbitrary non-empty set.
• a σ-algebra — a set of subsets (called events) of Ω s.t.
− Ω ∈ F .
− F is closed under complements:

A ∈ F ⇒ Ω\A ∈ F .
− F is closed under countable unions:

(Ai)i∈N ∈ F ⇒
⋃
i∈N

Ai ∈ F .

• a probability measure P : F → [0, 1] s.t.
− P is σ-additive: if (Ai)i∈N ∈ Ω is a countable collection of pairwise disjoint

sets, then
P(

⋃
i∈N

Ai) =
∑
i∈N

P(Ai).

− P(Ω) = 1.
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Immediate Properties (as exercises)
• ∅ ∈ F and P(∅) = 0.
• A ⊂ B ⇒ P(A) ≤ P(B).

• P(A ∩ B) ≤ min(P(A),P(B)).

• P(A ∪ B) ≤ P(A) + P(B).

• P(Ω\A) = 1− P(A).

• If (Ai)i∈N ∈ F is set of pairwise disjoint events s.t.
⋃

i∈N Ai = Ω, then∑
i∈N P(Ai) = 1.
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Conditional Probability
Assume P(B) 6= 0. The conditional probability of event A given B is defined as

P(A|B) :=
P(A ∩ B)

P(B)
. (†)

• Chain rule:

P(A1 ∩ A2 ∩ ... ∩ Ak) = P(A1)P(A2|A1)P(A3|A2 ∩ A1)...P(Ak |Ak−1 ∩ ... ∩ A1).

Proof: Recursively apply (†).

• Independence: Two events A and B are independent (A ⊥ B) iff

P(A ∩ B) = P(A)P(B) ⇔ P(A|B) = P(A).
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Discrete vs. Continuous Probability Space
• Discrete case (sufficient for this course):
− Ω contains at most countably many elements.
− If Ω is finite, we typically set F = 2Ω (2Ω stands for the power set of Ω).
− P is characterized by probability mass function p : Ω→ [0, 1]

s.t.
∑

ω∈Ω p(ω) = 1. This means:

∀A ∈ F : P(A) =
∑
ω∈A

p(ω).

• Continuous case:
− Ω is a (possibly uncountable) measurable space.
− P is a probability measure.
− P often admits a probability density function p : Ω→ [0, 1] (Ω ⊂ Rn),

i.e.,

∀A ∈ F : P(A) =

∫
A

p(ω)dω.

Formally, p = dP
dω is the Radon-Nikodym derivative of P w.r.t. the Lebesgue

measure.
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Random Variable
A random variable X on (Ω,F ,P) is a measurable function X : Ω→ X s.t.

∀A ⊂ X measurable : P(X ∈ A) := P(X−1(A)) = P({ω ∈ Ω : X (ω) ∈ A}).
For discrete RV, it’s convenient to directly work on the (discrete) output space X :

p(x) := P(X = x) =
∑

ω:X (ω)=x

P(ω).

• Expectation:

E[X ] :=

∫
Ω

X (ω)dP(ω) (continuous)

=
∑
ω∈Ω

X (ω)p(ω) =
∑

x

xp(x). (discrete)

• Covariance (X ,Y are both real-valued RV):

Cov[X ,Y ] :=E[(X − E[X ])(Y − E[Y ])]

=E[XY ]− E[X ]E[Y ].

• Variance: Var[X ] := Cov[X ,X ].
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Simple Properties (as exercises)
Expectation:

• E[a] = a for any constant a.
• Linearity:

E[X + Y ] = E[X ] + E[Y ],

E[αX ] = αE[X ]. (α is a constant scalar)

Covariance:

• Cov[X , a] = Cov[a,X ] = 0 for any constant a.
• Homogeneity:

Cov[αX , βY ] = αβ Cov[X ,Y ]. (α, β are constant scalars)

• Covariance under independence X ⊥ Y :

E[XY ] = E[X ]E[Y ] ⇔ Cov[X ,Y ] = 0.
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Joint, Marginal, and Conditional Probability
Let two discrete RVs X ,Y be given.

Joint probability:
p(x , y) = P(X = x ,Y = y).

Marginal probability:
p(x) =

∑
y

p(x , y).

Conditional probability:

p(x |y) = P(X = x |Y = y) =
p(x , y)

p(y)
=

p(x , y)∑
x p(x , y)

.

Conditional independence between X ,Y given Z (i.e. X ⊥ Y |Z ) iff

p(x , y |z) = p(x |z)p(y |z) ⇔ p(x |y , z) = p(x |z).

Bayes’ rule:

p(y |x) =
p(x |y)p(y)

p(x)
.
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Example on Binary Segmentation
Consider a (simplified) binary segmentation problem:
X ∈ {Dark, Bright}, Y ∈ {Foreground, Background}.

p(x , y) Dark Bright p(y)
Foreground 0.163 0.006 0.169
Background 0.116 0.715 0.831

p(x) 0.279 0.721
Figure: Probability Table for Binary Segmentation.

• Conditional probability via joint probability:

P(Y = Foregr.|X = Dark) =
P(X = Dark,Y = Foregr.)

P(X = Dark)
=

0.163
0.279

= 0.584.

• Conditional probability via Bayes’ rule:

P(X = Dark|Y = Foregr.) =
P(Y = Foregr.|X = Dark)P(X = Dark)

P(Y = Foregr.)

=
0.584 · 0.279

0.169
= 0.964.
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