

II : Graphical Model Representation

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence Technical University of Munich

Tun Uhrenturm

Outline of the Chapter

- Bayesian network (directed graphical model).
- Markov random field (undirected graphical model).
- Independence assumption, representation power, parameterization, etc.

Computer Vision & Artificial Intelligence Department of Informatics Technical University of Munich

Bayesian Network

PGM SS19 : II : Graphical Model Representation

Bayesian Network (BN)

A Bayesian network (BN) is a *directed acyclic graph* $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ together with:

- Random variables $X = (X_i)_{i \in \mathcal{V}}$ over \mathcal{V} ;
- A (joint probability) distribution *P factorized* as a product of conditional probability distributions (CPDs):

$$p(x) = \prod_{i \in \mathcal{V}} p(x_i | (x_j)_{j \in \operatorname{Pa}_{\mathcal{G}}(i)}),$$

where $Pa_{\mathcal{G}}(i) = \{j \in \mathcal{V} : (j, i) \in \mathcal{E}\}$ consists of parents of *i* in \mathcal{G} .

Example "Student"

P(D, I, G, S, L) = P(D)P(I)P(G|D, I)P(S|I)P(L|G).

Figure: Bayesian network represented by probability tables.

Model Complexity

Consider BN representation for RVs $(X_i)_{i=1}^n$.

• If each RV X_i takes at most d outcomes and has at most k parents, then representation of

 $p(x_i|(x_j)_{j\in \operatorname{Pa}_{\mathcal{G}}(i)})$

requires $O(d^{k+1})$ free parameters.

- Since the joint distribution for $(X_i)_{i=1}^n$ is a product of *n* CPDs, the overall model complexity for BN is $O(nd^{k+1})$.
- Compared to a naive representation for the joint distribution which requires $O(d^n)$ parameters (typically $n \gg k$).

The reduction of complexity is due to the underlying independence assumptions.

Independencies in BNs

• For a distribution *P* for RVs (X_i), we denote by $\mathcal{I}(P)$ the set of all **independence assumptions (assertions)** that hold in *P*:

$$\mathcal{I}(\mathcal{P}) = \{(X_i \perp X_j \,|\, X_k)\}.$$

Recall conditional independence: $X_i \perp X_j \mid X_k$ iff

$$p(x_i, x_j | x_k) = p(x_i | x_k) p(x_j | x_k).$$

• BN \mathcal{G} implies local independencies:

$$\mathcal{I}_{\ell}(\mathcal{G}) = \Big\{ \Big(X_i \perp (X_j)_{j \in \mathsf{NonDes}_{\mathcal{G}}(i) \setminus \{i\} \setminus \mathsf{Pa}_{\mathcal{G}}(i)} \, | \, (X_k)_{k \in \mathsf{Pa}_{\mathcal{G}}(i)} \Big) \Big\},$$

where NonDes_G(*i*) contains the non-descendants of *i* in G.

Example "Student"

$$\mathcal{I}_{\ell}(\mathcal{G}) = \Big\{ \Big(X_i \perp (X_j)_{j \in \mathsf{NonDes}_{\mathcal{G}}(i) \setminus \{i\} \setminus \mathsf{Pa}_{\mathcal{G}}(i)} \, | \, (X_k)_{k \in \mathsf{Pa}_{\mathcal{G}}(i)} \Big) \Big\}.$$

In this example we have, e.g., $(L \perp \{I, D, S\} \mid G)$, $(G \perp S \mid \{I, D\}) \in \mathcal{I}_{\ell}(\mathcal{G})$.

Beyond Local Independence

- Does \mathcal{G} encode other independence assertions besides $\mathcal{I}_{\ell}(\mathcal{G})$? (Yes.)
- How to identify a specific independence assertion in \mathcal{G} ? (D-separation.)

Figure: Two-edge trails from X to Y via Z. (d) is called the **v-structure**.

In the above figure, information/dependence flows from X to Y if the **trail** $X \leftrightarrow Z \leftrightarrow Y$ is **active**. This is the case if:

- In (a)–(c), Z is unobserved. (In contrast, $X \perp Y \mid Z$.)
- In (d), *Z* or one of its descendants is observed. (In contrast, $X \perp Y$ o.w.) PGM SS19 : II : Graphical Model Representation

Active Trail

Let $X_1 \leftrightarrow X_2 \leftrightarrow ... \leftrightarrow X_n$ be a trail in a BN \mathcal{G} , and Z be a set of observed nodes (RVs). The trail is **active** given Z if

- Whenever there is a v-structure (case (d)) in the trail $X_{i-1} \leftrightarrow X_i \leftrightarrow X_{i+1}$, then X_i or one of its descendants are in Z.
- No other node along the trail belongs to Z.

Intuitively, information/dependence flows from X_1 to X_n (and vice versa) through the active trail $X_1 \leftrightarrow X_2 \leftrightarrow ... \leftrightarrow X_n$.

D-separation, Global Independence

Let X, Y, Z be three sets of nodes in a BN G. If there is no active trail between any node in X and Y given Z, we say X and Y are **d-separated** given Z.

Figure: (left) X_1 and X_6 are d-sep. given $\{X_2, X_3\}$; (right) X_2 and X_3 are not d-sep. given $\{X_1, X_6\}$.

We denote by $\mathcal{I}(\mathcal{G})$ the set of **global Markov independencies**:

 $\mathcal{I}(\mathcal{G}) = \{ (X \perp Y | Z) : X \text{ and } Y \text{ are d-separated given } Z \}.$

Facts about D-separation

- F1. (Soundness) If a distribution *P* factorizes according to \mathcal{G} , then $\mathcal{I}(\mathcal{G}) \subset \mathcal{I}(P)$. The converse is also true. In this case, we call \mathcal{G} an **I-map** for *P*.
- F2. (Sharpness) If nodes X and Y are not d-separated given Z in \mathcal{G} , then X and Y are dependent given Z in some distribution P that factorizes over \mathcal{G} .
- F3. (Completeness) When a distribution *P* factorizes according to \mathcal{G} , $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$ does not necessarily holds. Obviously, one can add superfluous edges to \mathcal{G} s.t. $\mathcal{I}(\mathcal{G}) \subsetneq \mathcal{I}(P)$.

$$\begin{array}{c|c} p(b|a) & b_0 & b_1 \\ \hline a_0 & 0.4 & 0.6 \\ a_1 & 0.4 & 0.6 \\ \end{array}$$

Figure: Here $A \perp B$. Note that $A \rightarrow B$ is an I-map for P, but $\emptyset = \mathcal{I}(\mathcal{G}) \subsetneq \mathcal{I}(P)$.

Remark: For almost all *P* (except for a set of measure zero in the space of CPD parameterizations) for which \mathcal{G} is an I-map, we have $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$.

I-equivalence

We can compare two BNs using their independence assertions.

- Two BNs \mathcal{G}_1 and \mathcal{G}_2 are said to be **I-equivalent** if $\mathcal{I}(\mathcal{G}_1) = \mathcal{I}(\mathcal{G}_2)$.
- The **skeleton** of a BN $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is an *undirected* graph $(\mathcal{V}, \mathcal{E}')$ such that $\{X, Y\} \in \mathcal{E}'$ whenever $(X, Y) \in \mathcal{E}$.
- <u>Fact</u>: If two BNs have the same skeleton and the same set of v-structures, then they are I-equivalent.

Figure: Example of two I-equivalent BNs.

Perfect Map and Counterexamples

- We say a BN \mathcal{G} is a **perfect map** for a distribution P if $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$.
- · Certain independencies cannot be expressed perfectly by BN.

Figure: A counterexample where a perfect map does not exist.

- (a) Desired independence assertions: $A \perp C \mid \{B, D\}, B \perp D \mid \{A, C\}$.
- (b) In this BN: $(A \perp C \mid \{B, D\}) \in \mathcal{I}(\mathcal{G})$, but $(B \perp D \mid \{A, C\}) \notin \mathcal{I}(\mathcal{G})$.
- (c) Again, $(A \perp C \mid \{B, D\}) \in \mathcal{I}(\mathcal{G})$, but $(B \perp D \mid \{A, C\}) \notin \mathcal{I}(\mathcal{G})$.

Topics which are not covered here ...

- Algorithm for detecting d-separation in a BN \mathcal{G} .
- Algorithm for finding minimal I-map \mathcal{G} for a given distribution P.
- Algorithm for finding perfect map \mathcal{G} (if exists) for a given distribution P.
- Further reading: Koller & Friedman, Chapter 3.

Computer Vision & Artificial Intelligence Department of Informatics Technical University of Munich ТЛП

Markov Random Field

PGM SS19 : II : Graphical Model Representation

Markov Random Field (MRF)

A Markov Random Field (MRF) is an *undirected graph* $\mathcal{H} = (\mathcal{V}, \mathcal{E})$, together with a (joint probability) distribution P for RVs $X = (X_i)_{i \in \mathcal{V}}$ s.t.

$$p(x) = \frac{1}{Z} \prod_{C \in \text{Clique}(\mathcal{H})} \phi_C(x_C), \qquad (\dagger)$$

- Clique(\mathcal{H}) is the set of **cliques** (i.e. *fully connected subgraphs*) of \mathcal{H} .
- Each ϕ_C is a (nonnegative) **factor** on the clique *C*, and $x_C = (x_i)_{i \in \mathcal{V}_C}$.
- *Z* is the **partition function** ("Z" from German word "Zustandssumme"):

$$Z = \sum_{x} \prod_{C \in \mathsf{Clique}(\mathcal{H})} \phi_C(x_C),$$

which is a normalization constant ensuring $\sum_{x} p(x) = 1$.

Distributions that can be factorized in form of (†) are called **Gibbs distributions**.

Illustration of MRF

$$p(a, b, c, d) = \frac{1}{Z} \phi_{\{A,B\}}(a, b) \phi_{\{B,C\}}(b, c) \phi_{\{C,D\}}(c, d) \phi_{\{D,A\}}(d, a),$$

$$Z = \sum_{a,b,c,d} \phi_{\{A,B\}}(a, b) \phi_{\{B,C\}}(b, c) \phi_{\{C,D\}}(c, d) \phi_{\{D,A\}}(d, a).$$

Figure: MRF in (a) cannot be perfectly represented by BN in (b) or (c).

Independencies in MRFs

Recall that global independencies in BNs are characterized by "active trail" and "d-separation". We do the equivalent for MRFs.

- Let $X_1 ... X_n$ be a path in MRF \mathcal{H} , and O the set of observed nodes. The path $X_1 - ... - X_n$ is **active** given O if none of $(X_i)_{i=1}^n$ belongs to O.
- Let X, Y, O be three sets of nodes in MRF H. If there is no active path between any node in X and Y given O, then we say X and Y are separated given O.
- We define the **global independencies** given by \mathcal{H} as:

 $\mathcal{I}(\mathcal{H}) = \{ (X \perp Y \mid O) : X \text{ and } Y \text{ are separated given } O \}.$

Facts about Separation in MRF

- F1. (Soundness) If a distribution *P* factorizes according to MRF \mathcal{H} , then \mathcal{H} is an I-map for *P*, i.e. $\mathcal{I}(\mathcal{H}) \subset \mathcal{I}(P)$.
- F2. (Hammersley-Clifford theorem) Converse to (F1), if \mathcal{H} is an I-map for a *positive* distribution *P*, then *P* factorizes according to \mathcal{H} . (A **positive distribution** has strictly positive probability for any (non-empty) event.)
- F3. (Sharpness) If nodes X and Y are not separated given O in \mathcal{H} , then X and Y are dependent given O in some distribution P that factorizes over \mathcal{H} .
- F4. (Completeness) When a distribution *P* factorizes according to \mathcal{H} , $\mathcal{I}(\mathcal{H}) = \mathcal{I}(P)$ does not necessarily hold.

Markov Blanket

• Let RVs $X = (X_i)_{i \in \mathcal{V}}$ and a distribution P for X be given. the **Markov blanket** of nodes $Y \subset X$ (" \subset " meaning $Y = (X_i)_{i \in \mathcal{V}'}$ with $\mathcal{V}' \subset \mathcal{V}$) under P is the minimal set of nodes $U \subset X \setminus Y$ s.t.

$$(Y \perp X \setminus Y \setminus U \mid U) \in \mathcal{I}(P).$$

• <u>Fact</u>: If a distribution *P* factorizes according to MRF \mathcal{H} , then the **Markov blanket** of any node is given by its neighbors in \mathcal{H} .

Figure: Markov blanket for node X.

Applying Markov Blanket

- An I-map \mathcal{H} for P is **minimal** if removing any edge from \mathcal{H} renders it no longer an I-map for P. Note that a minimal I-map is not necessarily perfect.
- One can use Markov blanket (MB) to construct "minimal I-map": $\forall i \in \mathcal{V}$: identify MB of $i \rightsquigarrow$ forge edge(s) from i to its MB.
- To construct a minimal I-map $\mathcal{H}=(\mathcal{V},\mathcal{E})$, set

 $\mathcal{E} = \left\{ \{i, j\} \in \mathcal{V} \times \mathcal{V} : X_j \text{ belongs to the Markov blanket of } X_i \text{ under } P \right\}.$

Figure: (left) *P* factorized according to BN (v-structure) indicates dependence of *X* and *Y* given *Z* observed. (right) Hence, an I-map for *P* by MRF must have the edge $\{X, Y\}$.

• Converting BN (left fig.) to MRF (right fig.) is called moralization.

PGM SS19 : II : Graphical Model Representation

Factor Graph

In an MRF, the joint distribution is factorized into a product of factors. It is possible to make factor-node interaction explicit in a "factor graph".

- A factor graph is a tuple $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$ consisting of a set \mathcal{V} of variable nodes, a set $\mathcal{F} \subset 2^{\mathcal{V}}$ of factor nodes, and a set $\mathcal{E} \subset \mathcal{V} \times \mathcal{F}$ of edges.
- Each edge in \mathcal{E} connects one variable node and a factor node, hence the overall factor graph \mathcal{G} is **bipartite**.
- The factor graph G defines a family of joint distributions for $X = (X_i)_{i \in V}$ factorized as

$$egin{aligned} \wp(x) &= rac{1}{Z} \prod_{F \in \mathcal{F}} \phi_F(x_F), \ Z &= \sum_x \prod_{F \in \mathcal{F}} \phi_F(x_F), \end{aligned}$$

with each ϕ_F being a factor for $X_F = (X_i)_{i \in \mathcal{V}: (i,F) \in \mathcal{E}}$.

Illustration of Factor Graph

Figure: (left) A fully connected MRF with four nodes; (mid) Factor graph with pairwise factors; (right) Factor graph with a single joint factor.

- Factor graphs in (mid) and (right) are both valid for the MRF in (left). Hence, the ambiguity in the factorization of MRF is resolved by factor graph representation.
- A pairwise MRF contains only *unary* and *pairwise* (but no higher-order) factors. Note: A pairwise MRF is a tree ⇔ its factor graph is a tree.

Parameterization of MRFs

• In a factor graph, we often rewrite factor ϕ_F using **energy function** E_F :

$$\phi_F(x_F) =: \exp(-E_F(x_F)) \Rightarrow$$

 $p(x) = \exp\left(-\sum_{F \in \mathcal{F}} E_F(x_F) - \log Z\right),$
 $\log Z = \log\sum_x \exp\left(-\sum_{F \in \mathcal{F}} E_F(x_F)\right).$

• MRF in **log-linear form** (useful for learning):

$$p(x; \theta) = \exp \Big(-\sum_{C \in \mathsf{Clique}(\mathcal{H})} \theta_C^\top \psi_C(x_C) - \log Z(\theta) \Big)$$

 $\log Z(\theta) = \log \sum_x \exp \Big(-\sum_{C \in \mathsf{Clique}(\mathcal{H})} \theta_C^\top \psi_C(x_C) \Big).$

Each ψ_C maps x_C to a set of "features"; θ_C are weights which yield a linear function of features.

• Distributions of this form are members of the exponential family.

PGM SS19 : II : Graphical Model Representation

,

Conditional Random Field (CRF)

In some applications, a subset of nodes of an MRF are always observable. In this case, we can simplify MRF as conditional random field. A **conditional** random field (CRF) is a factor graph $\mathcal{G} = (\mathcal{V}, \mathcal{F}, \mathcal{E})$, with

- $\mathcal{V} = \mathcal{X} \cup \mathcal{Y}$ with observable var. $X = (X_i)_{i \in \mathcal{X}}$ and target var. $Y = (Y_j)_{j \in \mathcal{Y}}$.
- ${\mathcal F}$ does not have any element being a subset of ${\mathcal X}.$
- The conditional distribution P(Y|X) is factorized as

$$p(y|x) = \frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \phi_F(y_{F \cap Y}; x_{F \cap X}),$$

$$Z(x) = \sum_{y} \prod_{F \in \mathcal{F}} \phi_F(y_{F \cap Y}; x_{F \cap X}).$$

PGM SS19 : II : Graphical Model Representation

MAP Inference on CRF

• CRF parameterized by energies:

$$p(y|x) = \exp\left(-\sum_{F\in\mathcal{F}} E_F(y_F; x_F) - \log Z(x)
ight),$$

 $\log Z(x) = \log \sum_y \exp\left(-\sum_{F\in\mathcal{F}} E_F(y_F; x_F)
ight).$

• MAP inference given $x, (\theta_F)_{F \in \mathcal{F}}, (E_F)_{F \in \mathcal{F}}$:

$$\max_{y} p(y|x) \Leftrightarrow \max_{y} \exp\left(-\sum_{F \in \mathcal{F}} E_F(y_F; x_F)\right)$$
$$\Leftrightarrow \min_{y} \sum_{F \in \mathcal{F}} E_F(y_F; x_F) =: E(y; x)$$

• $\max_{y} p(y|x)$ is a special case of **structured prediction**: $\max_{y} g(y, x)$.

Example: Image Denoising by MAP on CRF

$$\begin{split} \min_{y} E(y;x) &:= \sum_{i \in \mathcal{V}} |y_i - x_i|^2 + \alpha \sum_{i \in \mathcal{V}} \sum_{j \in \mathsf{nbh}(i)} |y_i - y_j|.\\ \text{unary factors} \qquad \text{pairwise factors} \end{split}$$

Summary

- Markov random field: definition, independence assertions.
- Factor graph: explicit representation of factors in MRF.
- Parameterization of MRF: energy, log-linear form.
- Conditional random field: MRF conditioning on observable nodes.
- Further reading: Koller & Friedman, Chapter 4; Murphy, Chapter 19.