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Outline of the Chapter
• Bayesian network (directed graphical model).

• Markov random field (undirected graphical model).

• Independence assumption, representation power, parameterization, etc.
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Bayesian Network
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Bayesian Network (BN)

A Bayesian network (BN) is a directed acyclic graph G = (V , E) together with:

• Random variables X = (Xi)i∈V over V ;

• A (joint probability) distribution P factorized as a product of conditional
probability distributions (CPDs):

p(x) =
∏
i∈V

p(xi|(xj)j∈PaG(i)),

where PaG(i) = {j ∈ V : (j, i) ∈ E} consists of parents of i in G.
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Example "Student"

P(D, I,G,S, L) = P(D)P(I)P(G|D, I)P(S|I)P(L|G).

Figure: Bayesian network represented by probability tables.
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Model Complexity
Consider BN representation for RVs (Xi)

n
i=1.

• If each RV Xi takes at most d outcomes and has at most k parents, then
representation of

p(xi|(xj)j∈PaG(i))

requires O(dk+1) free parameters.

• Since the joint distribution for (Xi)
n
i=1 is a product of n CPDs, the overall

model complexity for BN is O(ndk+1).

• Compared to a naive representation for the joint distribution which requires
O(dn) parameters (typically n� k ).

The reduction of complexity is due to the underlying independence assumptions.
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Independencies in BNs
• For a distribution P for RVs (Xi), we denote by I(P) the set of all

independence assumptions (assertions) that hold in P:

I(P) =
{
(Xi ⊥ Xj |Xk)

}
.

Recall conditional independence: Xi ⊥ Xj |Xk iff

p(xi , xj|xk) = p(xi|xk)p(xj|xk).

• BN G implies local independencies:

I`(G) =
{(

Xi ⊥ (Xj)j∈NonDesG(i)\{i}\PaG(i) | (Xk)k∈PaG(i)

)}
,

where NonDesG(i) contains the non-descendants of i in G.
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Example "Student"

I`(G) =
{(

Xi ⊥ (Xj)j∈NonDesG(i)\{i}\PaG(i) | (Xk)k∈PaG(i)

)}
.

In this example we have, e.g., (L ⊥ {I,D,S} |G), (G ⊥ S | {I,D}) ∈ I`(G).
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Beyond Local Independence
• Does G encode other independence assertions besides I`(G)? (Yes.)
• How to identify a specific independence assertion in G? (D-separation.)

Figure: Two-edge trails from X to Y via Z . (d) is called the v-structure.

In the above figure, information/dependence flows from X to Y if the trail
X ↔ Z ↔ Y is active. This is the case if:

• In (a)–(c), Z is unobserved. (In contrast, X ⊥ Y |Z .)
• In (d), Z or one of its descendants is observed. (In contrast, X ⊥ Y o.w.)
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Active Trail

Let X1 ↔ X2 ↔ ...↔ Xn be a trail in a BN G, and Z be a set of observed nodes
(RVs). The trail is active given Z if

• Whenever there is a v-structure (case (d)) in the trail Xi−1 ↔ Xi ↔ Xi+1, then
Xi or one of its descendants are in Z .

• No other node along the trail belongs to Z .

Intuitively, information/dependence flows from X1 to Xn (and vice versa) through
the active trail X1 ↔ X2 ↔ ...↔ Xn.
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D-separation, Global Independence
Let X ,Y ,Z be three sets of nodes in a BN G. If there is no active trail between
any node in X and Y given Z , we say X and Y are d-separated given Z .

Figure: (left) X1 and X6 are d-sep. given {X2,X3}; (right) X2 and X3 are not d-sep. given {X1,X6}.

We denote by I(G) the set of global Markov independencies:

I(G) = {(X ⊥ Y |Z ) : X and Y are d-separated given Z}.
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Facts about D-separation

F1. (Soundness) If a distribution P factorizes according to G, then I(G) ⊂ I(P).
The converse is also true. In this case, we call G an I-map for P.

F2. (Sharpness) If nodes X and Y are not d-separated given Z in G, then X and
Y are dependent given Z in some distribution P that factorizes over G.

F3. (Completeness) When a distribution P factorizes according to G,
I(G) = I(P) does not necessarily holds. Obviously, one can add
superfluous edges to G s.t. I(G) ( I(P).

p(b|a) b0 b1

a0 0.4 0.6
a1 0.4 0.6

Figure: Here A ⊥ B. Note that A→ B is an I-map for P, but ∅ = I(G) ( I(P).

Remark: For almost all P (except for a set of measure zero in the space of
CPD parameterizations) for which G is an I-map, we have I(G) = I(P).
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I-equivalence
We can compare two BNs using their independence assertions.

• Two BNs G1 and G2 are said to be I-equivalent if I(G1) = I(G2).

• The skeleton of a BN G = (V , E) is an undirected graph (V , E ′) such that
{X ,Y} ∈ E ′ whenever (X ,Y ) ∈ E .

• Fact: If two BNs have the same skeleton and the same set of v-structures,
then they are I-equivalent.3.3. Independencies in Graphs 77
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Figure 3.7 Skeletons and v-structures in a network. The two networks shown have the same skeleton
and v-structures (X ! Y  Z ).

Note that the v-structure network in figure 3.5d induces a very di�erent set of d-separation
assertions, and hence it does not fall into the same I-equivalence class as the first three. Its
I-equivalence class contains only that single network.

I-equivalence of two graphs immediately implies that any distribution P that can be factorized
over one of these graphs can be factorized over the other. Furthermore, there is no intrinsic
property of P that would allow us to associate it with one graph rather than an equivalent
one. This observation has important implications with respect to our ability to determine
the directionality of influence. In particular, although we can determine, for a distribution
P (X, Y ), whether X and Y are correlated, there is nothing in the distribution that can help us
determine whether the correct structure is X ! Y or Y ! X . We return to this point when
we discuss the causal interpretation of Bayesian networks in chapter 21.

The d-separation criterion allows us to test for I-equivalence using a very simple graph-based
algorithm. We start by considering the trails in the networks.

Definition 3.10 The skeleton of a Bayesian network graph G over X is an undirected graph over X that contains
skeleton an edge {X, Y } for every edge (X,Y ) in G.

In the networks of figure 3.7, the networks (a) and (b) have the same skeleton.
If two networks have a common skeleton, then the set of trails between two variables X and

Y is same in both networks. If they do not have a common skeleton, we can find a trail in
one network that does not exist in the other and use this trail to find a counterexample for the
equivalence of the two networks.

Ensuring that the two networks have the same trails is clearly not enough. For example, the
networks in figure 3.5 all have the same skeleton. Yet, as the preceding discussion shows, the
network of figure 3.5d is not equivalent to the networks of figure 3.5a–(c). The di�erence, is of
course, the v-structure in figure 3.5d. Thus, it seems that if the two networks have the same
skeleton and exactly the same set of v-structures, they are equivalent. Indeed, this property
provides a su�cient condition for I-equivalence:

Theorem 3.7 Let G1 and G2 be two graphs over X . If G1 and G2 have the same skeleton and the same set of
v-structures then they are I-equivalent.

The proof is left as an exercise (see exercise 3.16).
Unfortunately, this characterization is not an equivalence: there are graphs that are I-

equivalent but do not have the same set of v-structures. As a counterexample, consider complete
graphs over a set of variables. Recall that a complete graph is one to which we cannot add

Figure: Example of two I-equivalent BNs.

PGM SS19 : II : Graphical Model Representation 13

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



Perfect Map and Counterexamples
• We say a BN G is a perfect map for a distribution P if I(G) = I(P).

• Certain independencies cannot be expressed perfectly by BN.
3.4. From Distributions to Graphs 83
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Figure 3.10 Attempted Bayesian network models for the Misconception example: (a) Study pairs over
four students. (b) First attempt at a Bayesian network model. (c) Second attempt at a Bayesian network
model.

A second class of distributions that do not have a perfect map are those for which the inde-
pendence assumptions imposed by the structure of Bayesian networks is simply not appropriate.

Example 3.8 Consider a scenario where we have four students who get together in pairs to work on the homework
for a class. For various reasons, only the following pairs meet: Alice and Bob; Bob and Charles;
Charles and Debbie; and Debbie and Alice. (Alice and Charles just can’t stand each other, and Bob
and Debbie had a relationship that ended badly.) The study pairs are shown in figure 3.10a.

In this example, the professor accidentally misspoke in class, giving rise to a possible miscon-
ception among the students in the class. Each of the students in the class may subsequently have
figured out the problem, perhaps by thinking about the issue or reading the textbook. In subsequent
study pairs, he or she may transmit this newfound understanding to his or her study partners. We
therefore have four binary random variables, representing whether the student has the misconcep-
tion or not. We assume that for each X 2 {A, B, C, D}, x1 denotes the case where the student
has the misconception, and x0 denotes the case where he or she does not.

Because Alice and Charles never speak to each other directly, we have that A and C are con-
ditionally independent given B and D. Similarly, B and D are conditionally independent given
A and C . Can we represent this distribution (with these independence properties) using a BN?
One attempt is shown in figure 3.10b. Indeed, it encodes the independence assumption that
(A ? C | {B, D}). However, it also implies that B and D are independent given only A,
but dependent given both A and C . Hence, it fails to provide a perfect map for our target dis-
tribution. A second attempt, shown in figure 3.10c, is equally unsuccessful. It also implies that
(A ? C | {B, D}), but it also implies that B and D are marginally independent. It is clear that
all other candidate BN structures are also flawed, so that this distribution does not have a perfect
map.

3.4.3 Finding Perfect Maps ?

Earlier we discussed an algorithm for finding minimal I-maps. We now consider an algorithm
for finding a perfect map (P-map) of a distribution. Because the requirements from a P-map are
stronger than the ones we require from an I-map, the algorithm will be more involved.

Figure: A counterexample where a perfect map does not exist.

(a) Desired independence assertions: A ⊥ C | {B,D}, B ⊥ D | {A,C}.
(b) In this BN: (A ⊥ C | {B,D}) ∈ I(G), but (B ⊥ D | {A,C}) /∈ I(G).
(c) Again, (A ⊥ C | {B,D}) ∈ I(G), but (B ⊥ D | {A,C}) /∈ I(G).
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Topics which are not covered here ...

• Algorithm for detecting d-separation in a BN G.

• Algorithm for finding minimal I-map G for a given distribution P.

• Algorithm for finding perfect map G (if exists) for a given distribution P.

• Further reading: Koller & Friedman, Chapter 3.
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Markov Random Field
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Markov Random Field (MRF)
A Markov Random Field (MRF) is an undirected graph H = (V , E), together with
a (joint probability) distribution P for RVs X = (Xi)i∈V s.t.

p(x) =
1
Z

∏
C∈Clique(H)

φC(xC), (†)

• Clique(H) is the set of cliques (i.e. fully connected subgraphs) of H.

• Each φC is a (nonnegative) factor on the clique C, and xC = (xi)i∈VC.

• Z is the partition function ("Z" from German word "Zustandssumme"):

Z =
∑

x

∏
C∈Clique(H)

φC(xC),

which is a normalization constant ensuring
∑

x p(x) = 1.

Distributions that can be factorized in form of (†) are called Gibbs distributions.
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Illustration of MRF

p(a, b, c, d) =
1
Z
φ{A,B}(a, b)φ{B,C}(b, c)φ{C,D}(c, d)φ{D,A}(d , a),

Z =
∑

a,b,c,d

φ{A,B}(a, b)φ{B,C}(b, c)φ{C,D}(c, d)φ{D,A}(d , a).
3.4. From Distributions to Graphs 83
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Figure 3.10 Attempted Bayesian network models for the Misconception example: (a) Study pairs over
four students. (b) First attempt at a Bayesian network model. (c) Second attempt at a Bayesian network
model.

A second class of distributions that do not have a perfect map are those for which the inde-
pendence assumptions imposed by the structure of Bayesian networks is simply not appropriate.

Example 3.8 Consider a scenario where we have four students who get together in pairs to work on the homework
for a class. For various reasons, only the following pairs meet: Alice and Bob; Bob and Charles;
Charles and Debbie; and Debbie and Alice. (Alice and Charles just can’t stand each other, and Bob
and Debbie had a relationship that ended badly.) The study pairs are shown in figure 3.10a.

In this example, the professor accidentally misspoke in class, giving rise to a possible miscon-
ception among the students in the class. Each of the students in the class may subsequently have
figured out the problem, perhaps by thinking about the issue or reading the textbook. In subsequent
study pairs, he or she may transmit this newfound understanding to his or her study partners. We
therefore have four binary random variables, representing whether the student has the misconcep-
tion or not. We assume that for each X 2 {A, B, C, D}, x1 denotes the case where the student
has the misconception, and x0 denotes the case where he or she does not.

Because Alice and Charles never speak to each other directly, we have that A and C are con-
ditionally independent given B and D. Similarly, B and D are conditionally independent given
A and C . Can we represent this distribution (with these independence properties) using a BN?
One attempt is shown in figure 3.10b. Indeed, it encodes the independence assumption that
(A ? C | {B, D}). However, it also implies that B and D are independent given only A,
but dependent given both A and C . Hence, it fails to provide a perfect map for our target dis-
tribution. A second attempt, shown in figure 3.10c, is equally unsuccessful. It also implies that
(A ? C | {B, D}), but it also implies that B and D are marginally independent. It is clear that
all other candidate BN structures are also flawed, so that this distribution does not have a perfect
map.

3.4.3 Finding Perfect Maps ?

Earlier we discussed an algorithm for finding minimal I-maps. We now consider an algorithm
for finding a perfect map (P-map) of a distribution. Because the requirements from a P-map are
stronger than the ones we require from an I-map, the algorithm will be more involved.

Figure: MRF in (a) cannot be perfectly represented by BN in (b) or (c).

PGM SS19 : II : Graphical Model Representation 18

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



Independencies in MRFs
Recall that global independencies in BNs are characterized by "active trail" and
"d-separation". We do the equivalent for MRFs.

• Let X1 — ... — Xn be a path in MRF H, and O the set of observed nodes.
The path X1 — ... — Xn is active given O if none of (Xi)

n
i=1 belongs to O.

• Let X ,Y ,O be three sets of nodes in MRF H. If there is no active path
between any node in X and Y given O, then we say X and Y are separated
given O.

• We define the global independencies given by H as:

I(H) = {(X ⊥ Y |O) : X and Y are separated given O}.
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Facts about Separation in MRF

F1. (Soundness) If a distribution P factorizes according to MRF H, then H is an
I-map for P, i.e. I(H) ⊂ I(P).

F2. (Hammersley-Clifford theorem) Converse to (F1), if H is an I-map for a
positive distribution P, then P factorizes according to H. (A positive
distribution has strictly positive probability for any (non-empty) event.)

F3. (Sharpness) If nodes X and Y are not separated given O in H, then X and
Y are dependent given O in some distribution P that factorizes over H.

F4. (Completeness) When a distribution P factorizes according to H,
I(H) = I(P) does not necessarily hold.
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Markov Blanket
• Let RVs X = (Xi)i∈V and a distribution P for X be given. the Markov blanket

of nodes Y ⊂ X ("⊂" meaning Y = (Xi)i∈V ′ with V ′ ⊂ V) under P is the
minimal set of nodes U ⊂ X\Y s.t.(

Y ⊥ X\Y\U |U
)
∈ I(P).

• Fact: If a distribution P factorizes according to MRF H, then the Markov
blanket of any node is given by its neighbors in H.

Figure: Markov blanket for node X .
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Applying Markov Blanket
• An I-map H for P is minimal if removing any edge from H renders it no

longer an I-map for P. Note that a minimal I-map is not necessarily perfect.

• One can use Markov blanket (MB) to construct "minimal I-map":
∀i ∈ V : identify MB of i  forge edge(s) from i to its MB.

• To construct a minimal I-map H = (V , E), set

E =
{
{i, j} ∈ V × V : Xj belongs to the Markov blanket of Xi under P

}
.

X Y

Z

X Y

Z

Figure: (left) P factorized according to BN (v-structure) indicates dependence of X and Y
given Z observed. (right) Hence, an I-map for P by MRF must have the edge {X ,Y}.

• Converting BN (left fig.) to MRF (right fig.) is called moralization.
PGM SS19 : II : Graphical Model Representation 22

Computer Vision & Artificial Intelligence
Department of Informatics

Technical University of Munich



Factor Graph
In an MRF, the joint distribution is factorized into a product of factors. It is
possible to make factor-node interaction explicit in a "factor graph".

• A factor graph is a tuple G = (V ,F , E) consisting of a set V of variable
nodes, a set F ⊂ 2V of factor nodes, and a set E ⊂ V × F of edges.

• Each edge in E connects one variable node and a factor node, hence the
overall factor graph G is bipartite.

• The factor graph G defines a family of joint distributions for X = (Xi)i∈V
factorized as

p(x) =
1
Z

∏
F∈F

φF(xF),

Z =
∑

x

∏
F∈F

φF(xF),

with each φF being a factor for XF = (Xi)i∈V :(i,F )∈E .
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Illustration of Factor Graph
Figure: (left) A fully connected MRF with four nodes; (mid) Factor graph with pairwise factors;
(right) Factor graph with a single joint factor.

• Factor graphs in (mid) and (right) are both valid for the MRF in (left). Hence,
the ambiguity in the factorization of MRF is resolved by factor graph
representation.

• A pairwise MRF contains only unary and pairwise (but no higher-order)
factors. Note: A pairwise MRF is a tree⇔ its factor graph is a tree.
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Parameterization of MRFs
• In a factor graph, we often rewrite factor φF using energy function EF :

φF(xF) =: exp(−EF(xF)) ⇒
p(x) = exp

(
−
∑
F∈F

EF(xF)− log Z
)
,

log Z = log
∑

x

exp
(
−
∑
F∈F

EF(xF)
)
.

• MRF in log-linear form (useful for learning):

p(x ; θ) = exp
(
−

∑
C∈Clique(H)

θ>CψC(xC)− log Z (θ)
)
,

log Z (θ) = log
∑

x

exp
(
−

∑
C∈Clique(H)

θ>CψC(xC)
)
.

Each ψC maps xC to a set of "features"; θC are weights which yield a linear
function of features.

• Distributions of this form are members of the exponential family.
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Conditional Random Field (CRF)

In some applications, a subset of nodes of an MRF are always observable. In
this case, we can simplify MRF as conditional random field. A conditional
random field (CRF) is a factor graph G = (V ,F , E), with

• V = X ∪ Y with observable var. X = (Xi)i∈X and target var. Y = (Yj)j∈Y .

• F does not have any element being a subset of X .

• The conditional distribution P(Y |X ) is factorized as

p(y |x) = 1
Z (x)

∏
F∈F

φF(yF∩Y ; xF∩X),

Z (x) =
∑

y

∏
F∈F

φF(yF∩Y ; xF∩X).
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MAP Inference on CRF

• CRF parameterized by energies:

p(y |x) = exp

(
−
∑
F∈F

EF(yF ; xF)− log Z (x)

)
,

log Z (x) = log
∑

y

exp

(
−
∑
F∈F

EF(yF ; xF)

)
.

• MAP inference given x , (θF)F∈F , (EF)F∈F :

max
y

p(y |x) ⇔ max
y

exp

(
−
∑
F∈F

EF(yF ; xF)

)
⇔ min

y

∑
F∈F

EF(yF ; xF) =: E(y ; x).

• maxy p(y |x) is a special case of structured prediction: maxy g(y , x).
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Example: Image Denoising by MAP on CRF

min
y

E(y ; x) :=
∑
i∈V
|yi − xi|2 + α

∑
i∈V

∑
j∈nbh(i)

|yi − yj|.

unary factors pairwise factors
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Summary

• Markov random field: definition, independence assertions.

• Factor graph: explicit representation of factors in MRF.

• Parameterization of MRF: energy, log-linear form.

• Conditional random field: MRF conditioning on observable nodes.

• Further reading: Koller & Friedman, Chapter 4; Murphy, Chapter 19.
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