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Outline of the Chapter

.- Bayesian network (directed graphical model).
- Markov random field (undirected graphical model).

- Independence assumption, representation power, parameterization, etc.
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Bayesian Network
A Bayesian network (BN) is a directed acyclic graph G = (V, £) together with:

- Random variables X = (Xj);cy over V;

. A (joint probability) distribution P factorized as a product of conditional
probability distributions (CPDs):

p(x) = | [ p(xil(x)jepas(i)-

ey
where Pag(i) ={j € V : (j,i) € £} consists of parents of i in G.
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Example "Student”

P(D, !, G,S,L)= P(D)P(I)P(G|D, )P(S|)P(L|G).
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Figure: Bayesian network represented in probability tables.
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Model Complexity

Consider BN representation for RVs (X;)?_,.

. If each RV X takes at most d outcomes and has at most k parents, then
representation of

p(xi (X)) epag(i)
requires O(d**') free parameters.

. Since the joint distribution for (X;)"_, is a product of n CPDs, the overall
model complexity for BN is O(nd**1).

- Compared to a naive representation for the joint distribution which requires
O(d") parameters (typically n > k).

The reduction of complexity is due to the underlying independence assumptions.
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Independence in BN

- For a distribution P for RVs (X;), we denote by Z(P) the set of all
independence assumptions (assertions) that hold in P:

I(P) = {(Xi L X| X)}.
Recall conditional independence: X; L X; | X iff

p(Xi, Xi|Xk) = p(Xi| xi)P(Xj| Xk )-

- BN G implies local independencies:

Zi(G) = {(X/ L (X;)jeNonDesg(i) | (Xk)kePag(i)) },

where NonDesg( i) denotes the non-descendants of i (including i itself) in G.
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Example "Student”

Ig(g) — {(XI L (X/)IENonDeSQ(i) | (Xk)kePag(i)) }
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In the above example, we have: (L 1 {/, D, S}
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G), (G L S|{I,D}) € Z,(G).
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Beyond Local Independence

- Does G encode other independence assertions besides Z,(G)? (Yes.)
- How to identify whether a specific independence assertion holds in G?
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(a) (b)
Figure: Two-edge trails from X to Y via Z. (d) is called the V-structure.

In the above figure, dependence flows from X to Y if the trail X <+ Z <> Y'is
active. This is the case if:
. In (a)—(c), £ is unobserved.

. In a v-structure such as (d), Z or one of descendants of Z is observed.
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Active Trall
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(a) (b) (c) (d)

Let Xi & X5 < ... <> X, be atrailina BN G, and Z be a set of observed nodes
(RVs). The trail is active given Z if

- Whenever there is a v-structure (case (d)) in the trail Xj_4 <> X; <> Xj. 1, then
X; or one of its descendants are in Z.

- No other node along the trail is in Z.

Intuitively, information/dependence flows from X; to X, (and vice versa) through
the active trail X < X5 « ... & X,.
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D-separation, Global Independence

Let X, Y, Z be three sets of nodes in a BN G. If there is no active trail between
any node in X and Y given Z, we say X and Y are d-separated given Z.

X, X,
X, X
x, X6 X,
ng
X, X X

5 3

Xs

Figure: (left) X; and X; are d-sep. given { X5, X3}; (right) Xo and X3 are not d-sep. given {Xj, Xs}.

We denote by Z(G) the set of global Markov independencies:
Z(G) ={(X L Y|Z): Xand Y are d-separated given Z}.
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Facts about D-separation

F1. (soundness) If a distribution P factorizes according to G, then Z(G) C Z(P).
In this case, we call G an I-map for P.

F2. (sharpness) If nodes X and Y are not d-separated given Z in G, then X and
Y are dependent given Z in some distribution P that factorizes over G.

F3. (completeness) When a distribution P factorizes according to G,
Z(G) = Z(P) does not necessarily holds. Obviously, one can add
superfluous edges to G s.t. Z(G) C Z(P).

p(b|a) bo b
ao 0.4 0.6
a |04 0.6

Figure: A possible I-map for Pis A — B, but ) = Z(G) < Z(P). Such cases almost surely do not happen.

Remark: For almost all P (except for a set of measure zero in the space of
CPD parameterizations) for which G is an I-map, we have Z(G) = Z(P).
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- Two BNs Gy and G, are said to be l-equivalent if Z(G1) = Z(G»).

- The skeleton of a BN G = (V, &) is an undirected graph (V, £’) such that
{X,Y} € & whenever (X,Y) € £.

. Fact: If two BNs have the same skeleton and the same set of v-structures,
then they are |-equivalent.

Figure: Example of two |-equivalent BNs.
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Perfect Map and Counterexamples

- We say a BN G is a perfect map for a distribution P if Z(G) = Z(P).

. Certain independencies cannot be expressed perfectly by BN.

(a) (b) (c)
Figure: A counterexample where a perfect map does not exist.
(a) Desired independence assertions: A 1 C|{B,D}, B L D|{A, C}.
(b) InthisBN: (A L C|{B,D}) € Z(G), but (B L. D|{A, C}) ¢ Z(G).
(c) Again, (A L C|{B,D}) € Z(G), but (B L D|{A, C}) ¢ Z(G).
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Topics which are not covered here ...

. Algorithm for detecting d-separation in a BN G.
- Algorithm for finding minimal I-map G for a given distribution P.
. Algorithm for finding perfect map G (if exists) for a given distribution P.

- Further reading: Koller & Friedman, Chapter 3.
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