

II: Graphical Model Representation

Tao Wu, Yuesong Shen, Zhenzhang Ye

Computer Vision & Artificial Intelligence Technical University of Munich

Outline of the Chapter

- Bayesian network (directed graphical model).
- Markov random field (undirected graphical model).
- Independence assumption, representation power, parameterization, etc.

Bayesian Network

Bayesian Network

A Bayesian network (BN) is a directed acyclic graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ together with:

- Random variables $X = (X_i)_{i \in \mathcal{V}}$ over \mathcal{V} ;
- A (joint probability) distribution P factorized as a product of conditional probability distributions (CPDs):

$$p(x) = \prod_{i \in \mathcal{V}} p(x_i|(x_j)_{j \in Pa_{\mathcal{G}}(i)}),$$

where $Pa_{\mathcal{G}}(i) = \{j \in \mathcal{V} : (j, i) \in \mathcal{E}\}\$ consists of parents of i in \mathcal{G} .

Example "Student"

P(D, I, G, S, L) = P(D)P(I)P(G|D, I)P(S|I)P(L|G).

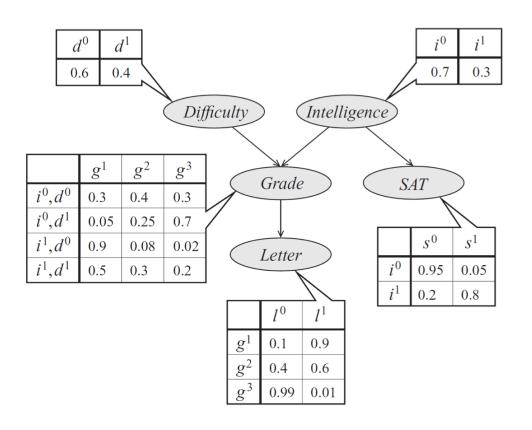


Figure: Bayesian network represented in probability tables.

PGM SS19: II: Graphical Model Representation

Model Complexity

Consider BN representation for RVs $(X_i)_{i=1}^n$.

 If each RV X_i takes at most d outcomes and has at most k parents, then representation of

$$p(x_i|(x_j)_{j\in Pa_G(i)})$$

requires $O(d^{k+1})$ free parameters.

- Since the joint distribution for $(X_i)_{i=1}^n$ is a product of n CPDs, the overall model complexity for BN is $O(nd^{k+1})$.
- Compared to a naive representation for the joint distribution which requires $O(d^n)$ parameters (typically $n \gg k$).

The reduction of complexity is due to the underlying independence assumptions.

Independence in BN

• For a distribution P for RVs (X_i) , we denote by $\mathcal{I}(P)$ the set of all **independence assumptions (assertions)** that hold in P:

$$\mathcal{I}(P) = \{(X_i \perp X_j | X_k)\}.$$

Recall conditional independence: $X_i \perp X_j \mid X_k$ iff

$$p(x_i, x_j | x_k) = p(x_i | x_k) p(x_j | x_k).$$

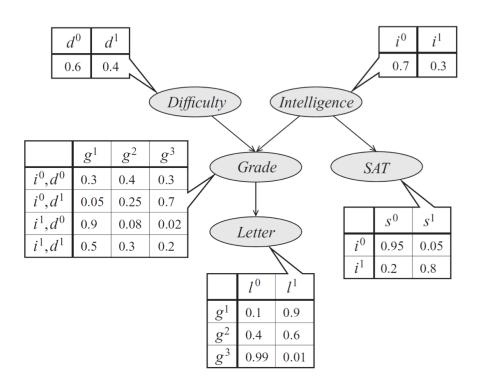
BN G implies local independencies:

$$\mathcal{I}_{\ell}(\mathcal{G}) = \Big\{ \Big(X_i \perp (X_j)_{j \in \mathsf{NonDes}_{\mathcal{G}}(i)} \, | \, (X_k)_{k \in \mathsf{Pa}_{\mathcal{G}}(i)} \Big) \Big\},$$

where NonDes_{\mathcal{G}}(i) denotes the non-descendants of i (including i itself) in \mathcal{G} .

Example "Student"

$$\mathcal{I}_{\ell}(\mathcal{G}) = \Big\{ \Big(X_i \perp (X_j)_{j \in \mathsf{NonDes}_{\mathcal{G}}(i)} \, | \, (X_k)_{k \in \mathsf{Pa}_{\mathcal{G}}(i)} \Big) \Big\}.$$



In the above example, we have: $(L \perp \{I, D, S\} \mid G)$, $(G \perp S \mid \{I, D\}) \in \mathcal{I}_{\ell}(G)$.

PGM SS19: II: Graphical Model Representation

Beyond Local Independence

- Does \mathcal{G} encode other independence assertions besides $\mathcal{I}_{\ell}(\mathcal{G})$? (Yes.)
- How to identify whether a specific independence assertion holds in \mathcal{G} ?

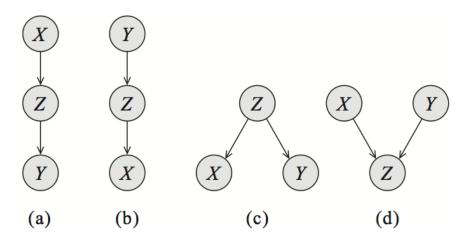
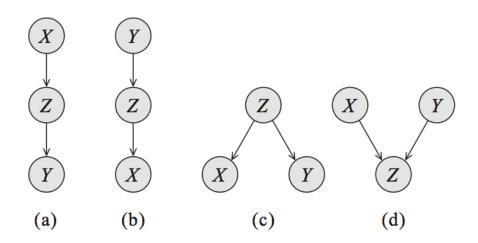


Figure: Two-edge trails from X to Y via Z. (d) is called the **v-structure**.

In the above figure, information/dependence flows from X to Y if the **trail** $X \leftrightarrow Z \leftrightarrow Y$ is **active**. This is the case if:

- In (a)–(c), Z is unobserved. (In contrast, $X \perp Y \mid Z$.)
- In (d), Z or one of its descendants is observed. (In contrast, $X \perp Y$ o.w.)

Active Trail



Let $X_1 \leftrightarrow X_2 \leftrightarrow ... \leftrightarrow X_n$ be a trail in a BN \mathcal{G} , and Z be a set of observed nodes (RVs). The trail is **active** given Z if

- Whenever there is a v-structure (case (d)) in the trail $X_{i-1} \leftrightarrow X_i \leftrightarrow X_{i+1}$, then X_i or one of its descendants are in Z.
- No other node along the trail is in Z.

Intuitively, information/dependence flows from X_1 to X_n (and vice versa) through the active trail $X_1 \leftrightarrow X_2 \leftrightarrow ... \leftrightarrow X_n$.

D-separation, Global Independence

Let X, Y, Z be three sets of nodes in a BN \mathcal{G} . If there is no active trail between any node in X and Y given Z, we say X and Y are **d-separated** given Z.

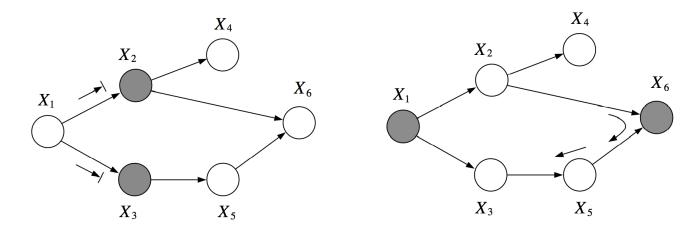


Figure: (left) X_1 and X_6 are d-sep. given $\{X_2, X_3\}$; (right) X_2 and X_3 are not d-sep. given $\{X_1, X_6\}$.

We denote by $\mathcal{I}(\mathcal{G})$ the set of **global Markov independencies**:

 $\mathcal{I}(\mathcal{G}) = \{(X \perp Y | Z) : X \text{ and } Y \text{ are d-separated given } Z\}.$

Facts about D-separation

- F1. (**soundness**) If a distribution P factorizes according to \mathcal{G} , then $\mathcal{I}(\mathcal{G}) \subset \mathcal{I}(P)$. In this case, we call \mathcal{G} an **I-map** for P.
- F2. (**sharpness**) If nodes X and Y are not d-separated given Z in G, then X and Y are dependent given Z in some distribution P that factorizes over G.
- F3. (**completeness**) When a distribution P factorizes according to \mathcal{G} , $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$ does not necessarily holds. Obviously, one can add superfluous edges to \mathcal{G} s.t. $\mathcal{I}(\mathcal{G}) \subsetneq \mathcal{I}(P)$.

$$\begin{array}{c|ccc} p(b|a) & b_0 & b_1 \\ \hline a_0 & 0.4 & 0.6 \\ a_1 & 0.4 & 0.6 \\ \end{array}$$

Figure: A possible I-map for P is $A \to B$, but $\emptyset = \mathcal{I}(\mathcal{G}) \subsetneq \mathcal{I}(P)$. Such cases almost surely do not happen.

Remark: For almost all P (except for a set of measure zero in the space of CPD parameterizations) for which \mathcal{G} is an I-map, we have $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$.

I-equivalence

- Two BNs \mathcal{G}_1 and \mathcal{G}_2 are said to be **I-equivalent** if $\mathcal{I}(\mathcal{G}_1) = \mathcal{I}(\mathcal{G}_2)$.
- The **skeleton** of a BN $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ is an undirected graph $(\mathcal{V}, \mathcal{E}')$ such that $\{X, Y\} \in \mathcal{E}'$ whenever $(X, Y) \in \mathcal{E}$.
- <u>Fact</u>: If two BNs have the same skeleton and the same set of v-structures, then they are I-equivalent.

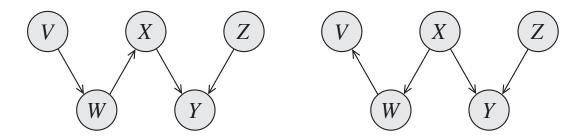


Figure: Example of two I-equivalent BNs.

PGM SS19: II: Graphical Model Representation

Perfect Map and Counterexamples

- We say a BN \mathcal{G} is a **perfect map** for a distribution P if $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$.
- Certain independencies cannot be expressed perfectly by BN.

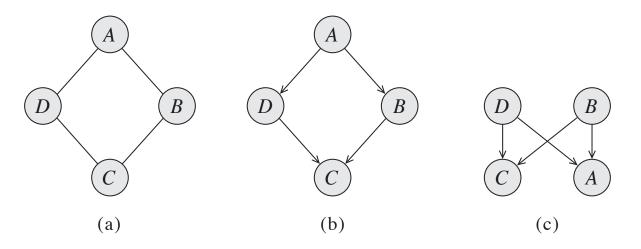


Figure: A counterexample where a perfect map does not exist.

- (a) Desired independence assertions: $A \perp C \mid \{B, D\}$, $B \perp D \mid \{A, C\}$.
- (b) In this BN: $(A \perp C \mid \{B, D\}) \in \mathcal{I}(\mathcal{G})$, but $(B \perp D \mid \{A, C\}) \notin \mathcal{I}(\mathcal{G})$.
- (c) Again, $(A \perp C \mid \{B, D\}) \in \mathcal{I}(\mathcal{G})$, but $(B \perp D \mid \{A, C\}) \notin \mathcal{I}(\mathcal{G})$.

Topics which are not covered here ...

- Algorithm for detecting d-separation in a BN \mathcal{G} .
- Algorithm for finding minimal I-map \mathcal{G} for a given distribution P.
- Algorithm for finding perfect map G (if exists) for a given distribution P.
- Further reading: Koller & Friedman, Chapter 3.