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Outline of the Chapter

.- Bayesian network (directed graphical model).
- Markov random field (undirected graphical model).

- Independence assumption, representation power, parameterization, etc.
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Bayesian Network (BN)

A Bayesian network (BN) is a directed acyclic graph G = (V, £) together with:

. Random variables X = (X;);cy over V;

- A (joint probability) distribution P factorized as a product of conditional
probability distributions (CPDs):

p(x) = | | p(xil(%)jerag(i)-

ey
where Pag(i) = {j € V : (j,i) € £} consists of parents of j in G.
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Example "Student”

P(D, !, G,S,L)= P(D)P(I)P(G|D, )P(S|)P(L|G).
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Figure: Bayesian network represented in probability tables.
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Model Complexity

Consider BN representation for RVs (X;)?_,.

. If each RV X takes at most d outcomes and has at most k parents, then
representation of

p(xi (X)) epag(i)
requires O(d**') free parameters.

. Since the joint distribution for (X;)"_, is a product of n CPDs, the overall
model complexity for BN is O(nd**1).

- Compared to a naive representation for the joint distribution which requires
O(d") parameters (typically n > k).

The reduction of complexity is due to the underlying independence assumptions.
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Independencies in BNs

- For a distribution P for RVs (X;), we denote by Z(P) the set of all
independence assumptions (assertions) that hold in P:

I(P) = {(Xi L X| X)}.
Recall conditional independence: X; L X; | X iff

p(Xi, Xi|Xk) = p(Xi| xi)P(Xj| Xk )-

- BN G implies local independencies:

T/(G9) = {(X/ L (Xj)jeNonDesg(i)\ {i}\ Pag(i) | (Xk)kePag(i)> },

where NonDesg(/) contains the non-descendants of j in G.
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Example "Student”

1,(G) = {(X, L (Xj)jeNonDesg(i)\ {1} Pag(i) | (Xk)kePag(/)> }
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In this example we have, e.g., (L L {/,D, S} | G), (G L S|{I,D}) € Z,(G).
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- Does G encode other independence assertions besides Z,(G)? (Yes.)
- How to identify a specific independence assertion in G? (D-separation.)

© O

@ @ @ v
®» ©®

(a) (b)
Figure: Two-edge trails from X to Y via Z. (d) is called the V-structure.

In the above figure, information/dependence flows from X to Y if the trail
X < Z « Y is active. This is the case if:
- In (a)—(c), Z is unobserved. (Incontrast, X L Y|Z.)

- In (d), Z or one of its descendants is observed. (In contrast, X L Y o.w.)
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Active Trall
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(a) (b) (c) (d)

Let Xi & X5 < ... <> X, be atrailina BN G, and Z be a set of observed nodes
(RVs). The trail is active given Z if

- Whenever there is a v-structure (case (d)) in the trail Xj_4 <> X; <> Xj. 1, then
X; or one of its descendants are in Z.

- No other node along the trail belongs to Z.
Intuitively, information/dependence flows from X; to X, (and vice versa) through

the active trail X < X5 «— ... & X,.
PGM SS19 : Il : Graphical Model Representation 10
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D-separation, Global Independence

Let X, Y, Z be three sets of nodes in a BN G. If there is no active trail between
any node in X and Y given Z, we say X and Y are d-separated given Z.

X, X,
X, X
x, X6 X,
ng
X, X X

5 3

Xs

Figure: (left) X; and X; are d-sep. given { X5, X3}; (right) Xo and X3 are not d-sep. given {Xj, Xs}.

We denote by Z(G) the set of global Markov independencies:
Z(G) ={(X L Y|Z): Xand Y are d-separated given Z}.

PGM SS19 : Il : Graphical Model Representation 11



Computer Vision & Artificial Intelligence

@ Department of Informatics
[~

Technical University of Munich

Facts about D-separation
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F1. (Soundness) If a distribution P factorizes according to G, then Z(G) C Z(P).
The converse is also true. In this case, we call G an I-map for P.

F2. (Sharpness) If nodes X and Y are not d-separated given Z in G, then X and
Y are dependent given Z in some distribution P that factorizes over G.

F3. (Completeness) When a distribution P factorizes according to G,
Z(G) = Z(P) does not necessarily holds. Obviously, one can add
superfluous edges to G s.t. Z(G) C Z(P).

p(b|a)

by by

aop
as

0.4 0.6
0.4 0.6

Figure: Here A L B. Note that A — Bis an I-map for P, but ) = Z(G) < Z(P).

Remark: For almost all P (except for a set of measure zero in the space of
CPD parameterizations) for which G is an I-map, we have Z(G) = Z(P).
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l-equivalence
We can compare two BNs using their independence assertions.
- Two BNs G and G, are said to be l-equivalent if Z(G1) = Z(G»).

- The skeleton of a BN G = (V, &) is an undirected graph (V, £’) such that
{X,Y} € & whenever (X, Y) € £.

. Fact: If two BNs have the same skeleton and the same set of v-structures,
then they are |-equivalent.

Wy W

Figure: Example of two I-equivalent BNs.
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Perfect Map and Counterexamples

- We say a BN G is a perfect map for a distribution P if Z(G) = Z(P).

. Certain independencies cannot be expressed perfectly by BN.

(a) (b) (c)
Figure: A counterexample where a perfect map does not exist.
(a) Desired independence assertions: A 1 C|{B,D}, B L D|{A, C}.
(b) InthisBN: (A L C|{B,D}) € Z(G), but (B L. D|{A, C}) ¢ Z(G).
(c) Again, (A L C|{B,D}) € Z(G), but (B L D|{A, C}) ¢ Z(G).
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Topics which are not covered here ...

. Algorithm for detecting d-separation in a BN G.
- Algorithm for finding minimal I-map G for a given distribution P.
. Algorithm for finding perfect map G (if exists) for a given distribution P.

- Further reading: Koller & Friedman, Chapter 3.
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Markov Random Field
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Markov Random Field (MRF)

A Markov Random Field (MRF) is an undirected graph H = (V, £), together with
a (joint probability) distribution P for RVs X = (Xj)icy s.t.

p(x) = 5 [T olxc) 8
Cely

- Cy is the set of cliques (i.e. fully connected subgraphs) of H.
- Each ¢¢ is a (nonnegative) factor on the clique C, and x¢ = (Xi)icy,-
. Z is the partition function

z=> ]] oclxc).

X Cely

which is a normalization constant ensuring » |, p(x) = 1.

Distributions that can be factorized in form of (7) are called Gibbs distributions.
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lllustration of MRF

1
p(a,b,c,d) = E¢{A,B}(aa b)o¢.cy(b, €)9ic,pi(C, d)dip a1 (d, @),

Z = Z ¢{A,B}(aa b)¢{B,C}(b7 C)¢{C,D}(Ca d)¢{D,A}(d7 a)'

a,b,c,d

(2} (5) (@) OO0
) © G"@

(a) (b) (c)
Figure: MRF in (a) cannot be perfectly represented by BN in (b) or (c).
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Independencies in MRFs
Recall that global independencies in BNs are characterized by "active trail" and

"d-separation”. We do the equivalent for MRFs.

. Let X — ... — X, be a path in MRF H, and O the set of observed nodes.
The path Xy — ... — X, is active given O if none of (X;)/_, belongs to O.

- Let X, Y, O be three sets of nodes in MRF . If there is no active path
between any node in X and Y given O, then we say X and Y are separated

given O.

- We define the global independencies given by H as:
Z(H)={(X L Y|O): Xand Y are separated given O}.
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Facts about Separation in MRF

F1.

F2.

F4.

(Soundness) If a distribution P factorizes according to MRF 7, then H is an
I-map for P, i.e. Z(H) C Z(P).

(Hammersley-Clifford theorem) Converse to (F1), if H is an I-map for a
positive distribution P, then P factorizes according to H. (A positive
distribution has strictly positive probability for any (non-empty) event.)

. (Sharpness) If nodes X and Y are not separated given O in ‘H, then X and

Y are dependent given O in some distribution P that factorizes over .

(Completeness) When a distribution P factorizes according to H,
Z(H) = Z(P) does not necessarily hold.
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Markov Blanket

- Let RVs X = (X))icy and a distribution P for X be given. the Markov blanket
of nodes Y C X ("C" meaning Y = (X)icy» with V' C V) under P is the
minimal set of nodes U C X\Y s.t.

(Y L X\Y\U|U) € Z(P).

. Fact: If a distribution P factorizes according to MRF #, then the Markov
blanket of any node is given by its neighbors in .

Figure: Markov blanket for node X.
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Minimal |-Map (MRF case)

- One can use Markov blanket to construct "minimal” I-map.

- An I-map H for P is minimal if removing any edge from H renders it no

longer an I-map for P. Note that a minimal I-map is not necessarily perfect,
i.e. Z(H) = Z(P).

- Let P be a positive distribution for X = (Xj);cy. To construct a minimal I-map
H=(VE), set

E = {{i,j} c V x V : X belongs to the Markov blanket of X; under P}.

Figure: (left) P factorized according BN (the v-structure) indicates dependence of X and Y given
Z observed. (right) Hence, an I-map for P by MRF must have the edge {X, Y}.

PGM SS19 : Il : Graphical Model Representation 22



Computer Vision & Artificial Intelligence
@ Department of Informatics
Technical University of Munich

In an MRF, the joint distribution is factorized into a product of factors. It is
possible to make factor-node interaction explicit in a "factor graph”.

- A factor graph is a tuple G = (V, F, £) consisting of a set V of variable
nodes, a set F C 2" of factor nodes, and a set £ C V x F of edges.

- Each edge in £ connects one variable node and a factor node, hence the
overall factor graph G is bipartite.

- The factor graph G defines a family of joint distributions for X = (X)icy
factorized as

p(x) = % 1] or(xe),
Z = Z H OF(XF),

x FeF
with each ¢ being a factor for X = (Xi)icy.(i Fyce-
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lllustration of Factor Graph

Figure: (left) A fully connected MRF with four nodes; (mid) Factor graph with pairwise factors;
(right) Factor graph with a single joint factor.

D Q=0 @ ©

GF—0 = & W

Remark: Factor graphs in (mid) and (right) are both valid for the MRF in (left).
Hence, the ambiguity in the factorization of MRF is resolved by factor graph
representation.
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Parameterization of MRFs

- In a factor graph, we often rewrite a factor ¢ using energy function Ef:
or(xF) =: exp(—Er(xf)) =
,O —exp( ZEF X/: |OgZ),

FeF
- MRF in log-linear form (useful for learning):

p(x;0) = exp( Z Octoe(xc) —log Z(0 ))
Cely

log Z(6) =log > _ exp ( - > 02%()«:)) -

Cely

Each ¢ maps x¢ to a set of "features”; 6 are weights which yield a linear
function of features.
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In some applications, a subset of nodes of an MRF are always observable. In
this case, we can simplify MRF as conditional random field. A conditional
random field (CRF) is a factor graph G = (V, F, £), with

. V consists of observable nodes X and target nodes Y.
- F must not contain any subset of .

- The conditional distribution P(Y|X) is factorized as

p(y|x) = H PE(YEnY: XFrx),
FeF

Z(x) = Z H Pr(YFnY; XFx)-
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CRF parameterized by energies:

p(y|x) = exp ( > Er(yr: x¢) — log Z(X)) :
log Z(x) = log Z exp < Z Er(yr; xF)> .

MAP inference given x, (0F), (EF).
arg max p(y|x) = arg max exp < Z Er(yr; Xe )

= arg m|n Z Er(ye; xr) =: E(y; x).
FeF
Example: Image segmentation via pairwise MRF:

E(y:x) =Y E(yix)+a Y  Ejyiyx.X).
ey (ij)e€
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Summary

- Markov random field: definition, independence assertions.
- Factor graph: explicit representation of factors in MRF.

- Parameterization of MRF: energy function, log-linear form.
. Conditional random field.

- Further reading: Koller & Friedman, Chapter 4; Murphy, Chapter 19.
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